论著
白司悦, 蔡侃臣, 周兰, 陈颖, 万大良, 周盛斌
目的 尸体角膜随死后时间延长发生的形态学变化是规律性较好的指标,常用来判断死亡时间(postmortem interval, PMI)。本文尝试用机器视觉代替人的肉眼主观判断,收集尸体样本以建立通过人体角膜图像推断PMI的模型。方法 收集实际案例建立包含505例人体死后角膜图像的数据库,PMI范围为0.24h(约死后14min)至492h(约死后20.5d),大致分为三类(依次为:0~<6h、6~<20h、20h及以上)或二类(0~<15h、15h及以上);使用由华盛顿大学陈天奇博士提出的Xgboost模型分别进行二分类与三分类分析;使用多种卷积神经网络模型分别进行分类和回归学习,并通过比较最终选择了由微软研究院提出的ResNet模型进行分析。结果 Xgboost在三分类时预测准确率依次为71.8%、40.7%、65.7%,二分类时为90%、48.5%。ResNet分类模型中,精准率、召回率在三分类时分别依次为:81%、75%,30%、50%,61%、71%,二分类时为:70%、92%,76%、38%。ResNet回归模型中,比较整个模型的预测结果,0~6h内的预测值与真实值较为接近,均值误差为0.5616,均方误差为0.5873,6h之后开始出现较大误差。结论 分类和回归模型都在0~6h之内得到了很好的结果,说明在此时间段内,角膜图像噪声较低,可预测性强。