应用超高效液相色谱 - 高分辨质谱法检测血样中秋水仙碱

庄顺, 林坚, 朱明怀, 林葭, 叶树海

刑事技术 ›› 2024, Vol. 49 ›› Issue (3) : 274-278. DOI: 10.16467/j.1008-3650.2024.0007
论著

应用超高效液相色谱 - 高分辨质谱法检测血样中秋水仙碱

作者信息 +

Determination of Colchicine in Blood by UPLC-Q/Orbitrap HRMS

Author information +
History +

摘要

秋水仙碱是一种强效生物碱,因其具有特殊的结构及药效,受到人们广泛的关注。多项研究都表明秋水仙碱体内血药浓度较低,因此对其检测分析方法的灵敏度要求较高。本文建立了使用超高效液相色谱-高分辨质谱仪(UPLC-Q/Orbitrap HRMS)测定血样中秋水仙碱的检测方法。考察不同流动相和色谱柱对秋水仙碱分离效果的影响,结果表明在甲醇水体系作为流动相条件下,使用Accucore™ Phenyl-Hexyl(2.1 mm×100 mm×2.6 μm)色谱柱,仪器响应值高且分离效果较好。采用乙腈为蛋白沉淀剂,有机微孔过滤膜净化提取液,用UPLC-Q/Orbitrap HRMS对血样中秋水仙碱进行定性定量检验。分析采用Accucore™ Phenyl-Hexyl(2.1 mm×100 mm×2.6 μm)色谱柱,电喷雾离子源正离子(FullMS/ddMS2)模式,使用阶梯碰撞能量:35、60和85 eV,用5 mmol/L甲酸铵水溶液和甲醇作为流动相梯度洗脱。本方法血样中的秋水仙碱定量限为0.5 ng/mL;秋水仙碱在0.5~100 ng/mL 范围内线性良好(R2=0.998 5),3个浓度平均回收率为92.8%~98.3%,日内精密度为1.6%~7.1%(n=6)。 这一定性定量分析方法简易可靠,灵敏度高,适用于血样中秋水仙碱的检验鉴定。

Abstract

As a potent alkaloid, colchicine has attracted much attention due to its unique structure and pharmacological properties. Colchicine has many medical applications, not only for the prevention and treatment of gouty arthritis, but also for the treatment of tumors, hepatitis and so on. Studies indicated that colchicine had low blood concentrations, so the method of determination of colchicine in blood should be more sensitive. Therefore, the objective of this article is to establish a sensitive method for analysis of colchicine in blood by liquid chromatogram-high resolution mass spectrum (UPLC-Q/Orbitrap HRMS). The effects of different mobile phases and chromatographic columns on the separation of colchicine were investigated. The results showed that the instrument had higher response value and better separation efficiency when Accucore™ Phenyl hexyl analytical column (2.1 mm×100 mm×2.6 μm) was used with methanol-water system as mobile phase. The blood sample (1.0 mL) was extracted with acetonitrile (1.0 mL) to precipitate protein. Then, its well-treated supernatant was separated on a Accucore™ Phenyl hexyl analytical column (2.1 mm×100 mm×2.6 μm) with gradient elution that was run through the mobile phases consisting of 5 mmol/L ammonium formate aqueous solution (mobile phase A) and methanol (mobile phase B). The analytes were analyzed with UPLC-Q/Orbitrap HRMS under the mode of positive-ion ESI in full MS/ddMS2. Step collision energies of 35 eV, 60 eV and 85 eV were used. Colchicine was linear with its calibration curve among the range of 0.5 to 100 ng/mL (R2=0.998 5),which showed good recovery and inter-day precision less than 7.1%. The method established here is simple, reliable, sensitive and appropriate for determination of colchicine in blood. In addition, colchicine is unstable when exposed to sunlight in solution. Attention should be paid to avoiding sunlight during the experiment so as to make the analysis results more reliable.

关键词

法医毒物学 / 超高效液相色谱-高分辨质谱 / 秋水仙碱 / 血样

Key words

forensic toxicology / UPLC-Q/Orbitrap HRMS / colchicine / blood sample

引用本文

导出引用
庄顺 , 林坚 , 朱明怀 , 林葭 , 叶树海. 应用超高效液相色谱 - 高分辨质谱法检测血样中秋水仙碱. 刑事技术. 2024, 49(3): 274-278 https://doi.org/10.16467/j.1008-3650.2024.0007
ZHUANG Shun , LIN Jian , ZHU Minghuai , LIN Jia , YE Shuhai. Determination of Colchicine in Blood by UPLC-Q/Orbitrap HRMS. Forensic Science and Technology. 2024, 49(3): 274-278 https://doi.org/10.16467/j.1008-3650.2024.0007
秋水仙碱(colchicine)是一种强效生物碱,因其具有特殊的结构及药效,受到人们广泛的关注[1]。最初它从百合科植物中被提取出来,是一种淡黄色的粉末或片、针状晶体。秋水仙碱在溶液状态不稳定,光照可产生β-和γ-光秋水仙碱(β and γ-lumicolchicine)(图1)及二聚体α-光秋水仙碱(α-lumicolchicine)[2-3]。秋水仙碱的医学用途颇多,不仅对痛风性关节炎有良好的防治作用,还可用于肿瘤、肝炎等的治疗。秋水仙碱的治疗剂量为0.015 mg/kg,中毒剂量为0.1 mg/kg,达到0.8 mg/kg时可致死。秋水仙碱中毒剂量较低,误服鲜黄花菜、用药不当都能引起中毒,也有人服用秋水仙碱自杀,甚至有人用其投毒[4-5]。药物动力学研究发现,秋水仙碱治疗量的血药浓度较低,通常小于10 ng/mL,一项研究显示,健康男志愿者单次口服1 mg后1 h达峰值5.5 ng/mL,24 h后降至0.4 ng/mL[6],还有几例使用秋水仙碱剂量过大而致死的案例,血样中秋水仙碱浓度从10~250 ng/mL不等[7]
图1 秋水仙碱光解产物

Fig.1 Photodecomposition products of colchicine

Full size|PPT slide

上述多项研究都表明秋水仙碱在体内血药浓度较低,因此对其检测分析方法的灵敏度要求较高。传统分析方法多采用液液提取、TCL薄层分析、气质联用仪、液相色谱或液质联用仪等,这些方法操作较为繁琐,有的灵敏度较低或是基质效应较大[8-9]。而高分辨质谱(HRMS)近年来在毒物筛查分析中日益流行,高分辨质谱信息使其具有强有力的确证能力,在筛查分析中发挥极大的优势,可解决各种毒药物的痕量成分在复杂基质中筛查分析的难题。超高效液相色谱-高分辨质谱(UPLC-Q/Orbitrap HRMS)同时具备超高效的液相分离能力和高分辨质谱分析能力,使其广受欢迎[10-11]。目前,用UPLC-Q/Orbitrap HRMS检测生物检材中秋水仙碱的文献尚未见报道。本文建立UPLC-Q/Orbitrap HRMS法测定血样中秋水仙碱,灵敏度高、选择性好、操作简捷快速,可为血样中秋水仙碱药物或痕量毒物分析提供良好的检测方法。

1 实验部分

1.1 仪器设备

超高效液相色谱-高分辨质谱联用仪(UPLC- Q/Orbitrap HRMS,美国ThermoFisher公司),AL204 -IC电子分析天平(瑞士梅特勒托利多公司),密理博超纯水机(美国密理博公司)。

1.2 试剂材料

甲酸、甲酸铵(分析纯,美国Tedia公司)、秋水仙碱(天津阿尔塔公司)、超纯水、乙腈及甲醇(色谱纯,德国Merck公司)。

1.3 样品的处理

用移液器移取血样1.0 mL于具塞离心管中,再加入乙腈1.0 mL,混匀振荡器振荡10 min,在转速 10 000 r/min下离心15 min,静置后取上清液有机微孔滤膜过滤后,上机检测。

1.4 液相色谱条件

Accucore™ Pheny hexyl (2.1 mm×100 mm×2.6 μm);色谱柱柱温箱温度:40 ℃;洗脱方法设置:0~1.0 min,95% A;1.0~9.0 min,95%~1% A;9.0~11.0 min,1% A;11.0~11.1 min,1%~95% A;11.1~12.0 min,95% A(流动相A:5 mmol/L甲酸铵水溶液;流动相B:甲醇);进样体积:5 μL;流动相速度:0.5 mL/min。

1.5 质谱条件

离子源:电喷雾离子源(ESI);正离子扫描;全扫描/二级质谱扫描(Full MS/ddMS2)模式,一级全扫扫描范围m/z 100~1 000,分辨率为60 000,二级为15 000。阶梯碰撞能量:35、60、85 eV。离子源温度:450℃;离子传输管温度:320℃;鞘气:40 Arb;辅助气:10 Arb;喷雾电压:3 000 V。

2 结果分析

2.1 实验条件的优化

本实验考察了Luna Omega PS C18(2.1 mm×100 mm×3 μm)色谱柱和Accucore™ Phenyl hexyl色谱柱(2.1 mm×100 mm×2.6 μm)两种色谱柱的分离效果。秋水仙碱具有多元芳烃结构,Accucore™ Phenyl hexyl色谱柱对秋水仙碱保留效果良好。本实验还比较了甲醇水、乙腈水和甲醇-乙腈(1∶1)水流动相的分离分析效果,其中甲醇水体系中秋水仙碱的响应值要高于其他体系。本实验在5 mmol/L甲酸铵水溶液和甲醇作为流动相条件下,色谱峰峰形较好,色谱峰附近未见明显干扰。

2.2 秋水仙碱母离子及二级碎片的精确质量数

秋水仙碱的离子质量及其测量准确度、母离子及二级碎片离子信息见表1。通过设置不同的阶梯碰撞能量发现秋水仙碱在阶梯碰撞能35、60和85 eV下,可获得信息丰富的二级离子碎片。
表1 秋水仙碱的离子质量及其测量准确度和二级碎片离子

Table 1 Accurate molecular weight, mass accuracy and fragment ions of colchicine

名称 离子质量理论值(M+H) /(m/z) 离子质量实测值(M+H)/(m/z) 质量测量准确度/ppm 二级碎片离子
1 2
秋水仙碱 400.17546 400.17487 1.47 358.16495 310.11920

2.3 秋水仙碱的液相色谱图及高分辨质谱图

按方法1.3处理空白血添加100 ng/mL秋水仙碱后,用1.4和1.5方法进样检测,在空白血添加样品中检出秋水仙碱的色谱峰,保留时间为6.20 min,母离子为400.174 87(定量离子),有358.164 95和310.119 20等多个二级碎片离子(秋水仙碱的色谱图和质谱图详见图2)。
图2 空白血样添加秋水仙碱的色谱图和高分辨质谱图

Fig.2 Chromatogram and mass spectra of blank blood spiked with colchicine

Full size|PPT slide

2.4 秋水仙碱的线性方程、线性范围及检测限

取空白血液样本添加秋水仙碱,配制成浓度为100、50、10、2和0.5 ng/mL的样品。按本文1.3方法进行样品处理,检测并制作工作曲线,秋水仙碱母离子(400.174 87)色谱峰面积为S,质量浓度为X(ng/mL),得到的线性方程为S=2.368×105X+3.125×104R2=0.998 5。可见,秋水仙碱在0.5~100 ng/mL浓度范围内与峰面积之间线性关系良好,可实现对血中秋水仙碱成分的定量检测,定量检测限0.5 ng/mL,方法检测限小于0.3 ng/mL。

2.5 秋水仙碱的精密度与方法回收率

配制100、50、1 ng/mL的高、中、低3个质量浓度的空白加标血样,按本文1.3方法进行样品处理,测得秋水仙碱峰面积S1。每份加标血样日内连续检测6次,根据所得的秋水仙碱峰面积计算日内精密度[12]
三种浓度添加的血样提取液测得秋水仙碱峰面积S1S1代入2.4中的曲线方程计算出相应的浓度,将曲线算出的浓度除以实际添加的浓度计算方法回收率,高、中、低三种浓度回收率分别为97.4%、98.3%、92.8%,日内精密度RSD在1.58%~7.12%之间,具体回收率和精密度结果分别见表2
表2 样本中秋水仙碱的回收率及精密度(n=6)

Table 2 Precision and recovery of colchicine in samples (n=6)

添加浓度/(ng/mL) 精密度RSD/% 回收率/%
1 7.12 92.8
50 1.58 98.3
100 1.97 97.4

2.6 方法的基质效应

准备空白血样1.0 mL多份,加入1.0 mL乙腈,按本文试验方法沉淀蛋白,在1.0 mL上层清液中添加秋水仙碱标准溶液,配制1、50、100 ng/mL的基质标准溶液,以基质标准溶液的峰面积与标准溶液(甲醇配制)的峰面积之比计算基质效应。发现待测物的峰面积未见明显变化,低、中、高三个浓度基质效应分别为96.2%、99.4%、102%,说明该提取检测方法不存在明显的基质效应,适用于血样中秋水仙碱的检测。

2.7 稳定性

本文考察了空白添加50 ng/mL秋水仙碱的血样在冰箱冷藏(4±1)℃下放置7 d的稳定性。配制了6个样品平行检测,结果表明空白添加血样在冰箱冷藏 (4±1)℃下放置7 d稳定,RSD为6.14%。

2.8 案例应用

2022年,福建某地,陈某在医院抢救无效死亡,死因不明。提取留存血样,应用该方法进行检测,最终从留存血样中检出秋水仙碱成分,定量分析血中秋水仙碱浓度为70.8 ng/mL,结合侦查及其他材料证实死者陈某被人投秋水仙碱致死。

3 总结讨论

本文建立了使用超高效液相色谱-高分辨质谱联用仪检测血样中秋水仙碱的方法,定性分析和定量分析都准确可靠。该方法操作便捷,基质干扰小,检测限低且回收率高,适用于血样中秋水仙碱的快速检验和定量检测,满足刑事技术工作中秋水仙碱中毒或死亡案件中血样分析的要求。此外,秋水仙碱在光照下不稳定易产生光秋水仙碱,实验过程中应注意避光,使得分析结果更稳定可靠。

参考文献

[1]
何红平, 刘复初. 秋水仙碱的研究进展[J]. 中草药, 1998, 29(10): 712-714.
(HE Hongping, LIU Fuchu. The research progress of colchicine[J]. Chinese Herbal Medicines, 1998, 29(10): 712-714.)
[2]
LACEY E, BRADY R L. Separation of colchicine and related hydrolysis and photodecomposition products by high- performance liquid chromatography, using copper ion complexation[J]. Journal of Chromatography A, 1984, 315: 233-241.
[3]
GHANEM R, BAKER H, SEIF M A, et al. Photochemical transformation of colchicine: a kinetic study[J]. Journal of Solution Chemistry, 2010, 39(4): 441-456.
[4]
刘伟, 沈敏, 沈保华, 等. 液相色谱-串联质谱法测定血液和尿液中秋水仙碱[J]. 中国法医学杂志, 2009, 24(1): 4-7.
(LIU Wei, SHEN Min, SHEN Baohua, et al. Determination of colchicine in urine and blood by liquid chromatography-tandem mass spectrometry with multiple-reaction monitoring[J]. Chinese Journal of Forensic Medicine, 2009, 24(1): 4-7.)
[5]
冯怡, 刘奕明, 曾星, 等. LC/MS/MS法测定人血浆中秋水仙碱的浓度[J]. 中药新药与临床药理, 2012, 23(5): 551-554.
(FENG Yi, LIU Yiming, ZENG Xing, et al. Determination of colchicine in human plasma by LC/MS/MS[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2012, 23(5): 551-554.)
[6]
JONES G R, SINGER P P, BANNACH B. Application of LC-MS analysis to a colchicine fatality[J]. Journal of Analytical Toxicology, 2002, 26: 365-369.
A 73-year-old man developed nausea, vomiting, and diarrhea 20-30 min after receiving a 1.0 mg intravenous dose of colchicine for the treatment of severe pain due to gouty arthritis in his physician's office. He was hospitalized 8 h later, and his condition deteriorated as he developed renal and respiratory failure. He subsequently died 10 h later, or a total of 18 h after he received the original 1 mg colchicine injection. The patient received a prescription for oral 0.6 mg colchicine tablets 8 days previously and consumed eight tablets during that period, an average of 0.6 mg/day (42 of 50 tablets remained at the time of death). Colchicine concentrations were measured by liquid chromatography-mass spectrometry in selected ion monitoring mode using positive ionization. Chromatography was performed using an Eclipse XDB C8 analytical column (30 mm x 2.1-mm i.d., 3-microm particle size) and a programmed mobile phase consisting of 50 mM pH 4 ammonium acetate buffer and acetonitrile. Colchicine concentrations were as follows: 50 microg/L in cardiac blood, 10 microg/L in vitreous humor, 575 microg/kg in liver, 12,000 microg/L in bile, and 4.4 microg in 60 g received gastric contents (estimated total gastric contents 100 g). The cause of death was ruled to be "acute colchicine toxicity" and the manner of death "accidental."
[7]
SCHREIBER L, MOROVI M, KATARÍNA PACAYOVÁ, et al. Colchicine extract suicidal lethal poisoning confirmation using high-resolution accurate mass spectrometry: a case study[J]. Journal of Forensic Sciences, 2019, 64 (4): 1274-1280.
A case of suspected acute and lethal intoxication caused by colchicine has been reported. The woman was hospitalized after her suspicion of suicidal poisoning by a rare autumn crocus (Colchicum autumnale). Suspected colchicine poisoning was confirmed using a novel UHPLC method with a modern reversed-phase stationary phase with a sub 2-micron superficial porous particle size combined with a QTOF mass spectrometer. Sample preparation procedure included the addition of propiverine as internal standard, protein precipitation using methanol and solid phase extraction. High-resolution MS only and targeted MS/MS modes are reported for the qualitative analysis and screening of other potential drugs of abuse in blood samples. All Ion MS mode was used for quantitative determination of colchicine afterward. The concentration of colchicine in the blood sample was approximately 41 ng/mL, and more than 200 μg/mL of the plant extract used for the suicide.© 2018 American Academy of Forensic Sciences.
[8]
范洪涛, 尤楠, 唐世军. 秋水仙碱分析方法的研究概述[J]. 化学研究, 2010, 21(4): 96-101.
(FAN Hongtao, YOU Nan, TANG Shijun. Progress of analytical methods for colchicine[J]. Chemical Research, 2010, 21(4): 96-101.)
[9]
ESTELLE, LAUER, CHRISTÈLE, et al. Body fluid and tissue analysis using filter paper sampling support prior to LC-MS/MS:application to fatal overdose with colchicine[J]. Drug Testing and Analysis, 2013, 5(9-10): 763-772.
[10]
蔺大伟, 张云峰, 郑佳佳, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法检测血斑中乙醇生物标志物[J]. 刑事技术, 2021, 46(6): 594-599.
(LIN Dawei, ZHANG Yunfeng, ZHENG Jiajia, et al. UPLC-Q/eOrbitrap HRMS determining alcohol biomarkers in bloodstains[J]. Forensic Science and Technology, 2021, 46(6): 594-599.)
[11]
徐琛, 李晓飞, 张云峰, 等. UPLC-HRMS快速检测血液中7种鼠药[J]. 刑事技术, 2021, 46(4): 365-369.
摘要
目的 建立血液中4类(7种)鼠药(毒鼠强、氟乙酸根、溴敌隆、大隆、杀鼠灵、杀鼠醚、氟鼠灵)的超高效液相色谱-高分辨质谱(UPLC-HRMS)快速检测方法。方法 采用乙腈为蛋白沉淀剂,用PLD<sup>+</sup>净化柱或有机微孔过滤膜净化提取液,用UPLC-HRMS对血液中的4类(7种)鼠药进行定性定量检测。分析采用Luna Omega PS C18(2.1mm&times;100mm, 3&micro;m)色谱柱,质谱扫描方式为负离子的全扫描/实时二级质谱扫描(Full MS/ddMS<sup>2</sup>)模式,一级全扫描(m/z 50~750)分辨率为 70000,二级扫描(ddMS<sup>2</sup>)分辨率为17500。 结果 毒鼠强、氟乙酸根、溴敌隆、大隆、杀鼠灵、杀鼠醚、氟鼠灵的检出限均为50ng/mL,3个添加水平下的回收率为85.3%~94.7%,日内相对标准偏差(RSD)为3.4%~11%( n=6),日间相对标准偏差(RSD)为5.6%~13% ( n=6)。结论 使用本方法可同时准确测定血液中的4类(7种)鼠药。
(XU Chen, LI Xiaofei, ZHANG Yunfeng, et al. Analysis of seven blood-harbored rodenticides with UPLC-HRMS[J]. Forensic Science and Technology, 2021, 46(4): 365-369.)
<strong>Objective</strong> To develop an analytical method for simultaneous determination of seven rodenticides (TETS, fluoroacetic acid, bromadiolone, brodifacoum, warfarin, coumatetralyl and flocoumafen) (categorized into 4 major kinds) in whole blood through ultra-high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). <strong>Methods</strong> The samples were treated with acetonitrile to precipitate protein, successively extracted through purification of PLD+ polymer column or organic microporous filter membrane. Luna Omega PS C18 chromatographic column (2.1mm&times;100mm, 3&micro;m) was adopted for chromatographic separation with gradient elution. The analytes were detected under the mode of negative-ion ESI in full MS/ddMS<sup>2</sup>. <strong>Results</strong> Detection limits (LODs) of the seven rodenticides varied among 10~50 ng/mL. The recoveries ranged from 85.3%~94.7% at three spiked levels in whole blood. The intra-day relative standard deviation (RSD) was 3.4%~11% (<em>n</em>=6), with the inter-day&rsquo;s being 5.6%~13% (<em>n</em>=6). <strong>Conclusion</strong> This method is both qualitative and quantitative, capable of simultaneous and accurate screening of seven rodenticides in whole blood.
[12]
庄顺, 林葭, 叶树海, 等. 新型毒品“火狐狸”针剂的GC-MS及GC/FID检验研究[J]. 刑事技术, 2020, 45(3): 263-265.
摘要
目的 建立N,N-二异丙基-5-甲氧基色胺(5-MeO-DiPT,俗称火狐狸)针剂(无针针筒给药器内液体)的GC-MS定性及GC/FID定量分析方法。方法 疑似含毒品针剂样品用乙酸乙酯提取,乙酸乙酯提取液浓缩至干,残渣溶解后用GC-MS及GC/FID进行检测。结果 测得未知组分的(tR=13.81min)质谱特征碎片峰信息为m/z 114(基峰)、274、174、160、145、130、117、72、43。经与标准物质5-MeO-DiPT的保留时间和质谱图比对,确定为N,N-二异丙基-5-甲氧基色胺。查阅资料对质谱图谱裂解机制进行推断解析。建立GC/FID定量分析方法,线性范围为20~500mg/L,三种添加浓度平均回收率85%以上。结论 文章建立的定性定量分析方法简易可靠,适用于含N,N-二异丙基-5-甲氧基色胺针剂液体的检验鉴定。
(ZHUANG Shun, LIN Jia, YE Shuhai, et al. Identification of 5-Methoxy-N,N-diisopropyltryptaminein injection with GC-MS and GC/FID[J]. Forensic Science and Technology, 2020, 45(3): 263-265.)
<b>Objective</b> To establish a method for analysis of 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT, sometimes called the Foxy, usually kept in aqueous solution within needleless syringe) with GC-MS and GC/FID. <b>Methods</b> The sample, suspected of containing drug in its aqueous solution with a needleless syringe, was extracted with ethyl acetate, having the extract concentrated and afterwards analyzed with GC-MS and GC/FID. <b>Results</b> An unknown component presented characteristic fragment ion peaks at <em>m</em>/<em>z</em> 114 (base peak), 274, 174, 160, 145,130, 117, 72, 43, showing well-matched to the reference substance of 5-MeO-DiPT with both the retention time and characteristic fragment ion peaks. Thus, the drug in the injection was tentatively identified as 5-MeO-DiPT. The mechanism of the above-mentioned fragment of characteristic mass-spectrum peak was inferred by reference to relevant literatures. The standard curve was linear from 20mg/L to 500mg/L with the relating coefficient of 0.9999 and average recoveries more than 85 %. <b>Conclusion</b> The method established here is simple, reliable and suitable for identification of 5-MeO-DiPT in aqueous solution.

569

Accesses

0

Citation

Detail

段落导航
相关文章

/