目的 提出一种基于Python平台的校正方法,解决曲面客体上指纹在采用光学方法提取后发生变形的问题。方法 根据标尺刻度的变化,自适应地求得最佳匹配曲面以及任意一点的放大率,通过逆变换消除曲面客体造成的畸变。结果 使用该方法校正曲率半径固定的简单曲面上指纹,结果的平均误差为5.3%,使用HGXJ-360曲面物证图像展平系统校正结果的平均误差为7%。使用该方法校正曲率半径变化的复杂曲面上的指纹,亦能取得显著的校正效果。结论 本文提出的渐变曲率曲面指纹的自适应校正方法能够自动化地校正各种曲面客体上的指纹,在简单曲面客体上其效果优于现有的成熟的校正方法,在复杂曲面客体上亦能得到优异的效果,能够为现场勘查中各类曲面物体上指纹的无损提取提供有力辅助。
Abstract
Objective A Python-based self-adaptive correction was to propose for fingerprints that had been extracted from the surfaces of gradual curvature so that the difficult problem could be solved about identifying the deformed fingerprints after optical development and visualization on curving objects. Methods A calibration-engraved scaling ruler was used to measure the curvature surface where fingerprint was deposited. Based on the measurement and calculation of the deformation from the ruler’s calibration, a correction approach was set up through Python3.4 programming plus devisal so that both the optimal matching surface and magnification rate were to figure out adaptively, making the distortion eliminated with reverse transformation. Therefore, a revision can be carried out into bringing the fingerprint to proximity to its original pattern. Results The fingerprints on simple curving radius-fixed surfaces have been able to correct with obvious effect under the average error of 5.3%, contrasting to the 7% from HGXJ-360, the Curvature-surface Physical Evidence Image Flattening System developed by Evidential Materials Authentication Center of Shanghai Public Security Bureau. For the fingerprints on complex surfaces of changing curvature radii, significant correction effects have even been attained furthermore. Conclusion The correction approach established here can automatically revise the fingerprints on various curved surfaces towards proximity to their original patterns, demonstrating effective for fingerprints on both the simple radius-fixed curvature surfaces and complex radius-changing ones, therefore capable of providing strong supports with nondestructive extraction of fingerprints on various surfaces in crime scene investigation.
关键词
曲面客体 /
复杂曲面 /
指纹校正
{{custom_keyword}} /
Key words
curved object /
complex curved surface /
fingerprint correction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林弟华,张明. 变形指纹的矫正与应用研究[J].刑事技术,2016, 41(6): 515-516.
(LIN Dihua, ZHANG Ming. Analysis and application of distorted fingerprint[J]. Forensic Science and Technology, 2016, 41(6): 515-516.)
[2] 曹轶超,虞静,于奎栋. 变形指印矫正方法与工具研发[J]. 警察技术,2017(1): 41-43.
(CAO Yichao, YU Jing, YU Kuidong. Development of tools for calibrating distorted fingerprints[J]. Police Technology, 2017(1): 41-43.)
[3] 倪前兵,周毅锦. 利用Photoshop校正圆柱形客体上的变形指纹[J]. 广东公安科技,2002(2): 33-34.
(NI Qianbing, ZHOU Yijin. Calibration of fingerprint on cylinder object by Photoshop[J]. Guangdong Public Security Technology, 2002(2): 33-34.)
[4] 唐宇穗,孙燕. 巧用PHOTOSHOP修正变形指纹特征[J].江苏警官学院学报,2016(5): 116-118.
(TANG Yusui, SUN Yan. Calibration of distorted fingerprint by using Photoshop[J]. Journal of Jiangsu Police Officer College, 2016(5): 116-118.)
[5] 陶桂兰,董大刚. 修正变形指纹提高比中概率的案例思考[J]. 刑事技术,2019, 44(6): 562-564.
(TAO Guilan, DONG Dagang. Matching probability improved by rectifying deformed fingerprints[J]. Forensic Science and Technology, 2019, 44(6): 562-564.)
[6] 仲伟波,吕园,李敏敏. 指纹拓扑模式构建及其在识别中的应用[J]. 中国图像图形学报,2013(12): 1587-1592.
(ZHONG Weibo, LÜ Yuan, LI Minmin. Fingerprint topological pattern construction and its application in recognition[J]. Journal of Image and Graphics, 2013(12): 1587-1592.)
[7] 赖国俊,申功炘. 控制点排列对图像校正的影响及重复校正[J]. 北京航空航天大学学报,2009(10): 1214-1219.
(LAI Guojun, SHEN Gongxin. Influence of control point arrangement on image correction and repeated rectification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009(10): 1214-1219.)
[8] 包清,樊少勇,黄晓春. 基于Taylor二阶展开的双线性插值偏角足迹校正技术[J]. 中国人民公安大学学报(自然科学版), 2019(3): 7-12.
(BAO Qing, FAN Shaoyong, HUANG Xiaochun. Correction of deflective footprint based on Taylor second-order expansion and bilinear interpolation[J]. Journal of People’s Public Security University of China(Science and Technology), 2019(3): 7-12.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
“十三五”国家重点研发计划(2017YFC0803806)
{{custom_fund}}