Rapid Identification of Bloodstain Based on Near Infrared Spectroscopy and Extreme Learning Machine Algorithm

BI Fulun, WANG Wei, QI Yueying, XIE Jiayi, NA Man, WU Jiaquan, LIANG Ying, ZHANG Jianqiang

Forensic Science and Technology ›› 2024, Vol. 49 ›› Issue (5) : 507-513. DOI: 10.16467/j.1008-3650.2023.0091
Research and Discussion

Rapid Identification of Bloodstain Based on Near Infrared Spectroscopy and Extreme Learning Machine Algorithm

Author information +
History +

Abstract

Bloodstain is one of the most important forensic evidences in criminal cases. How to identify the bloodstains and obtain some potential evidence is of great significance to solve the criminal case. In this paper, a hand-held near-infrared (NIR) spectrometer was used to collect the spectral data of different species of bloodstains samples on cotton fabrics with different colors including human blood, chicken blood and pig blood. After collecting the spectral data, standard normal variables (SNV) pre-processing operation was implemented on the spectral data to eliminate the common offset and scaling effects. Then, the training models were established via extreme learning machine (ELM) algorithm to identify the species of bloodstain. Next, the testing samples were predicted by means of using the built specie identification bloodstain model. Meanwhile, the traditional support vector machine (SVM) and genetic algorithm-back propagation (GA-BP) classification algorithms were also used to build the identification model and the prediction results were also compared with ELM algorithm. The experimental results showed that the prediction accuracy of ELM algorithm was 98.48%, which was higher than that of GA-BP algorithm (84.62%) and SVM algorithm (73.84%). Meanwhile, the precision, sensitivity and specificity of the prediction results using ELM algorithm were also much higher than those of SVM and GA-BP algorithms. The above results showed that the accuracy of the identification model built by ELM algorithm was the highest and the overall performance of the model was the best. The research results of the paper showed that he rapid detection method based on a handheld NIR spectrometer and ELM algorithm could identify the types of the bloodstains efficiently, non-destructively, quickly and accurately and it provided a new technical reference for bloodstains detection and identification in criminal cases.

Key words

near-infrared / extreme learning machine / bloodstain species / non-destructive / rapidly

Cite this article

Download Citations
BI Fulun , WANG Wei , QI Yueying , XIE Jiayi , NA Man , WU Jiaquan , LIANG Ying , ZHANG Jianqiang. Rapid Identification of Bloodstain Based on Near Infrared Spectroscopy and Extreme Learning Machine Algorithm. Forensic Science and Technology. 2024, 49(5): 507-513 https://doi.org/10.16467/j.1008-3650.2023.0091
在刑事案件中,血迹能够提供嫌疑人的犯罪动态及个人信息,是最重要的法庭证据之一。在案发现场,血迹检测的一般顺序为:肉眼检查、预试验、确证试验和种属鉴定。血迹种属鉴定用于明确血痕是人血还是动物血,常用的方法有血清学方法、细胞学方法、分子生物学方法及生物化学方法,以上方法虽然可以准确检测出血迹种属,但都属于有损检测[1-2]。因此,开发一种简单、快速、无损的分析技术,用于在刑事案发现场快速识别血迹种属,具有非常重要的公安实战意义。
近红外光谱技术是一种高效、快速的现代分析工具,它具有绿色、快速、无损、成本低等优点[3],目前已广泛应用于农业[4]、石油化工[5-6]、医药[7]等多个领域。然而,利用近红外光谱技术进行血液检测的研究却相对较少。德尔曼利用近红外光谱进行彩色背景上血迹遗留时长的预测,取得了较好的预测结果[8];Zhang等将近红外和偏最小二乘鉴别分析(partial least squares discriminant analysis, PLS-DA)相结合,对猕猴、人类和小鼠3种血液种属进行了鉴定[9]。棉织物作为一种重要的刑侦物证,经常出现在刑事案件现场,但目前并未对棉织物上的血迹种属快速鉴定进行专门的研究。因此,利用近红外光谱技术快速检测棉织物上残留的血迹对于快速侦破刑事案件具有重要意义。
极限学习机(extreme learning machine, ELM)作为一种优秀的分类算法,需要手动设置的参数只有隐含层节点个数,算法执行过程中不需要人工调整参数[10-11]。极限学习机算法近年来发展迅速,特别是在交通路牌识别[12]、医学[13]、图像识别[14]、故障诊断[15]、分类识别[16]等领域。极限学习机算法隐藏层神经元的输入参数是随机选择的,隐藏层无需迭代,且学习速度较快,泛化性能良好[17],在近红外光谱[18]、高光谱[19]、拉曼光谱[20]等光谱分析领域已得到了很好的应用。近红外光谱数据具有维度高、含有噪声、分辨率低等缺点,而ELM算法能很好地处理高维数据,非常适合处理高维近红外光谱数据。
本文提出一种基于ELM算法和近红外技术的血迹种属识别方法,实验结果表明,与传统的支持向量机(support vector machine, SVM)模型、遗传算法-反向传播(genetic algorithms-back propagation, GA-BP)模型相比,ELM模型具有最好的建模效果和预测能力,为刑事案件现场血迹种属的快速识别提供了一种新的技术参考。

1 实验和方法

1.1 样本

实验样本包括人血、鸡血和猪血三种类型。以上三种不同类型的样本个数均为72,样本总数为216。人类血液样本从2名男性志愿者的静脉中采集;鸡血和猪血从屠宰场获得,所获取的鸡血和猪血分别来自一只鸡和猪,且血液新鲜无污染。使用不同颜色(白色、米色、蓝色、红色、棕色和黑色)的100%纯棉织物作为实验客体。将以上血液样本均匀涂抹在每一块棉织物上,每个样本点涂抹0.05 mL的血液。实验室平均温度为26℃,样品在实验室保存7 d待完全干燥后进行光谱数据采集。制作的样本见图1所示,样本详细信息见表1
Fig.1 Blood samples on the different cotton fabric (1~3 are human blood, chicken blood and pig blood samples; a~f are the white, beige, blue, brown, red cotton and black cotton fabric)

图1 不同棉织物上的血液样本(1~3分别为人血、鸡血和猪血;a~f分别是白色、米色、蓝色、棕色、红色和黑色棉织物)

Full size|PPT slide

Table 1 The detail of the samples

表1 样本详细信息

基底棉织物颜色 人血份数 鸡血份数 猪血份数
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12

1.2 光谱采集

本文使用的实验设备为MicroNIR 1700-2200微型近红外光谱仪(美国JDSU)。设备光源为一对真空钨丝灯,采用16位模数转换器用于模拟转换。设备波长范围为908~1 676 nm,光谱分辨率为4 nm,数据采样间隔设置为6 nm,积分时间为9.6 μs。采集过程中,在样本下放置99%漫反射白板,每个样品采集2个近红外光谱,取2个光谱数据的平均值作为最终数据,在建模过程中将样本按7∶3的比例随机分为训练集和测试集。

2 建模方法和评价指标

2.1 极限学习机算法原理

极限学习机是深度学习算法之一,其特点是隐藏层节点的权值是随机或人为给定的,不需要更新。理论上,该算法在极快的学习速度下具有良好的泛化性能[21]
假设X是输入层数据集,H是隐藏层数据集,Y是输出层集合。用公式表示如下:
H=ωX+b
Y=βH
其中ω是输入层到隐藏层节点的权值,b是权值的隐藏节点,β为隐节点到输出层的权值。
ELM主要采用随机方式选取训练集。它不需要知道中间隐藏层的数据集,只需要知道对应关系就可以得到输出数据集[22-23],公式如下:
YgX+b)
其中g(x)表示隐含层中的激活函数,gX+b)表示ωX+b的输出,X是输入层数据集,Y是输出层数据集,ω是输入层到隐含节点的权重向量,b是偏置向量,β为隐节点到输出层的权值向量。其结构如图2所示。
Fig.2 Structure of extreme learning machine

图2 极限学习机的结构

Full size|PPT slide

理论上,当随机选取所有参数构建模型[24]时,ELM比传统网络更容易获得全局最优解。当优化约束较少时,ELM比SVM具有更好的分类性能[25]。与其他深度学习模型相比,ELM模型兼具性能高和计算时间短的优点,在实际应用中较其他模型更适合大规模分类任务[26-28]

2.2 分类模型的评价

混淆矩阵作为一种可视化工具,不仅可以用于评估监督学习的准确率,也可以用于评估无监督学习的准确率。该矩阵还可以显示分类结果的准确性。图3展示了混淆矩阵的基本形式。图中TP为真阳性,FN为假阴性,FP为假阳性,TN为真阴性。
Fig.3 Confusion matrix

图3 混淆矩阵

Full size|PPT slide

准确率是分类模型所有判断都正确的总观测值的比例:
 Accuracy =TP+TNTP+TN+FP+FN
精准度是分类器正确分类的正例样本数量与所有样本数量之比:
 Precision =TPTP+FP
灵敏度的定义如下:
 Sensitivty =TPTP+FN
特异度是实际阴性的正确比例:
 Specificity =TNTN+FP
F1-score (F1 score)为:
F1 score =2× Precision × Sensitivity  Precision + Sensitivity 
在本实验中,通过使用混淆矩阵的几个评价指标,能够体现模型在不同方面的性能和表现。如准确率能够反映模型的预测准确度;灵敏度反映了模型对不同类别的识别能力,如果模型在某个类别上的灵敏度低,说明模型对该类别的识别能力较弱,需要进一步优化模型。因此,通过混淆矩阵,可以了解模型在不同类别上的预测情况,从而更好地理解模型的决策过程。

3 结果和讨论

3.1 数据处理

首先对人体血液样本的标准近红外光谱进行采集,将血液样本放于石英皿中,使用手持式近红外光谱仪进行采集,采集的光谱如图4中红色曲线所示。同时,对不同颜色棉织物上的人体血液样本进行采集。从图中能够看出,不同颜色棉织物上人体血液光谱和石英皿中人体标准血液光谱的变化趋势相同,但棉织物上的血液光谱与标准光谱相比,由于受客体材质的影响,整体峰值向右偏移。
Fig.4 Comparison of NIR spectral between human blood on different cotton fabrics and standard human blood

图4 不同背景颜色棉织物上的人体血液样本与标准样本的光谱比较结果

Full size|PPT slide

血液的原始光谱数据既包含样本信息,同时也包含一定的噪声信息。预处理操作可以降低噪声的影响,增强建模效果。为了取得最佳的预处理效果,本文分别选择Savitzky-Golay+一阶导数(SG+D1)、标准正态变量变换(standard normal variate, SNV)、多元散射校正(multiplicative scatter correction, MSC)、Savitzky-Golay(SG)四种预处理方法对光谱原始数据进行预处理。
表2给出了在不同预处理方法下使用SVM算法建立血迹种属识别模型的实验结果。SVM算法的参数设置为:核函数为径向基函数(radial basis function, RBF),惩罚因子C=10,超参数gamma=0.01。由表2能够看出,当使用SNV预处理操作时,训练集和测试集的准确率最高。因此,在后续研究中,将采用SNV预处理方法对数据进行预处理操作。图5为所有样本的原始光谱数据和SNV操作后的预处理结果,其中图5a为原始光谱,图5b为预处理结果。
Table 2 Accuracies with different pre-processing methods based on SVM algorithm

表2 基于SVM算法的不同预处理方法精度

预处理方法 训练集正确率/% 测试集正确率/%
SG 60.19 60.18
SG+D1 62.50 61.60
MSC 74.71 69.69
SNV 84.76 73.84
Fig.5 The original spectral data (a) and pre-processing results (b)

图5 原始光谱数据(a)和预处理结果(b)

Full size|PPT slide

3.2 训练模型的构建

分别采用SVM、GA-BP、ELM算法对人、鸡、猪等不同类型血迹光谱建立定性模型,使用精准度、准确率、灵敏度和特异度作为模型评价指标。表3给出了使用不同建模方法对不同类型血迹训练模型评价结果。其中,ELM训练模型的分类准确率为100%,分别高于SVM、GA-BP算法15.24和8.02个百分点;ELM的灵敏度均为100%,人血样本分别高于SVM、GA-BP算法8.7、3.8个百分点;鸡血样本分别高于SVM、GA-BP算法17.6和20.9个百分点;猪血样本分别高于SVM、GA-BP算法18.5和2.9个百分点。此外,表3结果显示ELM的特异度和精准度均远高于SVM和GA-BP训练模型。以上实验结果表明,ELM具有最好的建模效果。
Table 3 Effects comparison of different training models for bloodstains

表3 不同血迹训练模型的效果比较

客体 算法 类型 训练样本数 错误样本数 训练正确数 PC/% SN/% SP/% F1-score OAC/%
纺织物 SVM 人血 46 4 42 87.5 91.3 94.3 0.89 84.76
鸡血 51 9 42 91.3 82.4 96.0 0.87
猪血 54 10 44 77.2 81.5 86.6 0.79
GA-BP 人血 53 2 51 85.5 96.2 93.9 0.90 91.98
鸡血 46 10 36 96.8 79.1 96.0 0.87
猪血 52 2 50 93.3 97.1 94.1 0.92
ELM 人血 50 0 0 100 100 100 1.00 100
鸡血 50 0 0 100 100 100 1.00
猪血 50 0 0 100 100 100 1.00
注:PC: precision; SN: sensitivity; SP: specificity; OAC: overall accuracy。表4同。

3.3 预测结果评价

SVM、GA-BP和ELM算法的预测结果如表4所示。从表4能够看出,SVM、GA-BP和ELM算法的平均预测准确率分别为73.84%、84.62%和98.48%,ELM算法分别高于SVM、GA-BP算法24.64、13.86个百分点。ELM分类算法具有最高的灵敏度,表明ELM算法具有最强的模型识别能力;同时,ELM算法人血、鸡血、猪血样本的F1-score分别为0.98、0.98、1.00,也为三种算法最高,表明ELM算法具有最低的误诊率。从表4可得,ELM算法的准确率、精准度、灵敏度、特异度和F1-score均远高于SVM和GA-BP算法。原因在于ELM算法是一种单个隐藏层的前馈神经网络,可自动确定合适的隐藏节点,收敛速度较快,具有良好的性能。与传统算法相比,ELM算法运行时间短、隐藏层无需迭代、泛化性能好、具有较高的鲁棒性,用于分类研究具有巨大的优势。以上结果表明,ELM算法结合近红外光谱数据能够很好地实现对不同类型的血迹进行种属鉴定。
Table 4 Effects comparison of different test models for bloodstains

表4 不同血迹测试模型效果比较

客体 算法 类型 测试样本 测试正确数 错误样本数 PC/% SN/% SP/% F1-score OAC/%
纺织物 SVM 人血 26 17 9 85.0 65.4 92.3 0.74 73.84
鸡血 21 18 3 85.7 85.7 93.2 0.86
猪血 18 13 5 54.2 72.2 76.6 0.62
GA-BP 人血 19 17 2 81.0 89.5 91.3 0.85 84.62
鸡血 26 18 8 90.0 69.2 94.9 0.78
猪血 20 20 0 83.3 100 91.1 0.91
ELM 人血 22 21 1 100 95.5 100 0.98 98.48
鸡血 22 22 0 95.7 100 98.5 0.98
猪血 22 22 0 100 100 100 1.00

4 结论

本文提出了一种利用手持式近红外光谱仪结合ELM算法进行血液种属鉴定的新方法,实验结果表明,该方法快速、准确,能够实现刑事案件现场血迹种属的快速识别。本文所提出的血迹种属快速识别方法为犯罪现场勘查提供了一种新的技术参考,具有良好的公安实战意义和推广应用价值。

References

[1]
ZUBAKOV D, CHAMIER-CIEMINSKA J, KOKMEIJER I, et al. Introducing novel type of human DNA markers for forensic tissue identification: DNA copy number variation allows the detection of blood and semen[J]. Forensic Science International: Genetics, 2018, 36: 112-118.
[2]
庄园, 高树辉, 谢菲, 等. 基于高光谱成像技术鉴别血痕种属的实验研究[J]. 激光与光电子学进展, 2022, 59(16): 474-482.
(ZHUANG Yuan, GAO Shuhui, XIE Fei, et al. Identifying bloodstain species using hyperspectral imaging[J]. Laser & Optoelectronics Progress, 2022, 59(16): 474-482.)
[3]
WATANABE A, FURUKAWA H, MIYAMOTO S, et al. Non-destructive chemical analysis of water and chlorine content in cement paste using near-infrared spectroscopy[J]. Construction and Building Materials, 2019, 196: 95-104.
[4]
TSUCHIKAWA S, MA T, INAGAKI T. Application of near-infrared spectroscopy to agriculture and forestry[J]. Analytical Sciences, 2022, 38(4): 635-642.
[5]
YU H W X, SHEN F. Novel automatic model construction method for the rapid characterization of petroleum properties from near-infrared spectroscopy[J]. Fuel, 2022(36): 123101.
[6]
ZHENG Q H H, ZHU S P. Quantitative and qualitative prediction of sulfur content in diesel by near infrared spectroscopy[J]. Journal of Near Infrared Spectroscopy, 2023(31): 63-69.
[7]
JAMRÓGIEWICZ M. Application of the near-infrared spectroscopy in the pharmaceutical technology[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66: 1-10.
Near-infrared (NIR) spectroscopy is currently the fastest-growing and the most versatile analytical method not only in the pharmaceutical sciences but also in the industry. This review focuses on recent NIR applications in the pharmaceutical technology. This article covers monitoring, by NIR, of many manufacturing processes, such as granulation, mixing or drying, in order to determine the end-point of these processes. In this paper, apart from basic theoretical information concerning the NIR spectra, there are included determinations of the quality and quantity of pharmaceutical compounds. Some examples of measurements and control of physicochemical parameters of the final medicinal products, such as hardness, porosity, thickness size, compression strength, disintegration time and potential counterfeit are included. Biotechnology and plant drug analysis using NIR is also described. Moreover, some disadvantages of this method are stressed and future perspectives are anticipated.Copyright © 2012 Elsevier B.V. All rights reserved.
[8]
EDELMAN G, MANTI V, VAN RUTH S M, et al. Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy[J]. Forensic Science International, 2012, 220(1-3): 239-244.
Non-destructive identification and subsequent age estimation of blood stains are significant steps in forensic casework. The latter can provide important information on the temporal aspects of a crime. As previously shown, visible spectroscopy of blood stains on white backgrounds can successfully be used for their identification and age estimation. The use of this technique however, is hampered by dark backgrounds. In the present study the feasibility to use near infrared (NIR) spectroscopy was evaluated for blood stain identification and age estimation on dark backgrounds. Using NIR reflectance spectroscopy, blood stains were distinguished from other substances with 100% sensitivity and 100% specificity. In addition, Partial Least Squares Regression analysis was applied to estimate the age of blood stains on colored backgrounds. The age of blood stains up to 1 month old was estimated successfully with a root mean squared error of prediction of 8.9%. These findings are an important step toward the practical implementation of blood stain identification and age estimation in forensic casework, where a large variety of backgrounds can be encountered.Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[9]
ZHANG L, ZHANG S, SUN M, et al. Blood species identification using near-infrared diffuse transmitted spectra and PLS-DA method[J]. Infrared Physics & Technology, 2016, 76: 587-591.
[10]
陆思源, 陆志海, 王水花, 等. 极限学习机综述[J]. 测控技术, 2018, 37(10): 3-9.
(LU Siyuan, LU Zhihai, WANG Shuihua, et al. Review of extreme learning machine[J]. Measurement & Control Technology, 2018, 37(10): 3-9.)
[11]
翟敏, 张瑞, 王宇. 极限学习机(ELM)网络结构调整方法综述[J]. 西安文理学院学报(自然科学版), 2014, 17(1): 1-6.
(ZHAI Min, ZHANG Rui, WANG Yu. A summary of network structure adjustments of extreme learning machine[J]. Journal of Xi’an University (Natural Science Edition), 2014, 17(1): 1-6.)
[12]
崔雷涛, 陈亮, 马强. 基于在线序列极限学习机的车牌字符识别方法[J]. 微型机与应用, 2015, 34(23): 30-32.
(CUI Leitao, CHEN Liang, MA Qiang. License plate character recognition method based ononline sequence extreme learning machine[J]. Cyber Security and Data Governance, 2015, 34(23): 30-32.)
[13]
张志洁, 侯睿. 基于极限学习机的脑卒中患病风险预测模型研究[J]. 电脑编程技巧与维护, 2022(6): 54-55, 113.
(ZHANG Zhijie, HOU Rui. Research on stroke risk prediction model based on extreme learning machine[J]. Computer Programming Skills &Maintenance, 2022(6): 54-55, 113.)
[14]
秦传波, 冯宝, 谌瑶. 基于主成分分析法和极限学习机的尿沉渣图像识别算法研究[J]. 现代电子技术, 2019, 42(11): 45-49.
(QIN Chuanbo, FENG Bao, CHEN Yao. Research on urine sediment image recognition algorithm based on principal component analysis method and extreme learning machine[J]. Modern Electronics Technique, 2019, 42(11): 45-49.)
[15]
高云峰, 张金萍. 基于LMD-PSO-ELM的轴承故障诊断与识别[J]. 沈阳化工大学学报, 2022, 36(5): 428-437.
(GAO Yunfeng, ZHANG Jinping. Bearing fault diagnosis and identification based on LMD - PSO - ELM[J]. Journal of Shenyang University of Chemical, 2022, 36(5): 428-347.)
[16]
王亚, 周孟然, 闫鹏程, 等. 基于极限学习机的矿井突水水源快速识别模型[J]. 煤炭学报, 2017, 42(9): 2427-2432.
(WANG Ya, ZHOU Mengran, YAN Pengcheng, et al. A rapid identification model of mine water inrush based on extreme learning machine[J]. Journal of China Coal Society, 2017, 42(9): 2427-2432.)
[17]
SUN X, XU J, JIANG C, et al. Extreme learning machine for multi-label classification[J]. Entropy, 2016, 18(6): 225.
[18]
沈欢超, 耿莹蕊, 倪鸿飞, 等. 近红外光谱技术结合教与学算法优化极限学习机实现烤烟等级判定[J]. 分析测试学报, 2022, 41(7): 1052-1057.
(SHEN Huanchao, GENG Yingrui, NI Hongfei, et al. Grade determination of flue-cured tobacco by near-infrared spectroscopy combined with teaching-learning-based optimization algorithm optimized extreme learning machine[J]. Journal of Instrumental Analysis, 2022, 41(7): 1052-1057.)
[19]
张伏, 王新月, 崔夏华, 等. 高光谱结合极限学习机的玉米品种鉴别[J]. 光谱学与光谱分析, 2023, 43(9): 2928-2934.
(ZHANG Fu, WANG Xinyue, CUI Xiahua, et al. Identification of maize varieties by hyperspectral combined withextreme learning machine[J]. Spectroscopy and Spectral Analysis, 2023, 43(9): 2928-2934.)
[20]
邢凌宇, 王巧云, 杨磊, 等. 基于拉曼光谱和改进极限学习机的葡萄糖浓度检测[J]. 光散射学报, 2020, 32(2): 159-165.
摘要
拉曼光谱技术由于其快速、简单且无损等优势,广泛地应用于组分的定量分析。目前常用的定量回归方法包括偏最小二乘、人工神经网络、支持向量机等,为寻求新方法,本文对41组葡萄糖样本的拉曼光谱数据研究,以极限学习机为定量回归基础,结合遗传算法、粒子群算法、人工蜂群算法等优化算法,比较分析后提出一种新型自适应差分进化的人工蜂群算法应用于极限学习机,该模型对差分进化的变异率和交叉率做了调整,能够降低极限学习机容易陷入局部最优和差分进化对参数依赖性大的问题,优化后模型的评价指标较传统极限学习机和基于其它优化算法都有显著提升。实验表明,基于自适应差分进化人工蜂群算法的极限学习机提高了预测精确度和模型稳健性。
(XING Lingyu, WANG Qiaoyun, YANG Lei, et al. Glucose concentration detection based on Raman spectroscopy and improved extreme learning machine[J]. The Journal of Light Scattering, 2020, 32(2): 159-165.)
Raman spectroscopy is widely used in the quantitative analysis of components because of its advantages of fast, simple and nondestructive. Currently, quantitative analysis methods of Raman spectroscopy include Partial Least Squares, Artificial Neural Network, Support Vector Machine, etc. In order to seek new methods, in this paper, the Raman spectroscopy data of 41 groups glucose samples were studied. The Extreme Learning Machine was used for quantitative regression. The optimization algorithms such as Genetic Algorithm, Particle Swarm Optimization Algorithm and Artificial Bee Colony Algorithm were used to improve it. After comparison and analysis,a new type of model was proposed, which called Self Adaption Differential Evolution Artificial Bee Colony Algorithm applied to the Extreme Learning Machine. The model adjusted the mutation rate and crossover rate of differential evolution,which can reduce the influence of the Extreme Learning Machine on local optimization and the differential evolution on parameter dependence. Comparing with the traditional Extreme Learning Machine and other optimization algorithm models, the optimized model evaluation index had a significant boost. Experiment showed that Extreme Learning Machine based on Self Adaption Differential Evolution Artificial Bee Colony Algorithm improved the prediction accuracy and model robustness.
[21]
HUANG G B Z Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[22]
HUANG G B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle[J]. Cognitive Computation, 2015(7): 263-278.
[23]
WANG J L S, WANG S H. A review on extreme learning machine[J]. Multimedia Tools and Applications, 2022, 81: 41611-41660.
[24]
LEUNG H C, LEUNG C S, WONG E W M. Fault and noise tolerance in the incremental extreme learning machine[J]. IEEE Access, 2019, 7: 155171-155183.
The extreme learning machine (ELM) is an efficient way to build single-hidden-layer feedforward networks (SLFNs). However, its fault tolerant ability is very weak. When node noise or node failure exist in a network trained by the ELM concept, the performance of the network is greatly degraded if a countermeasure is not taken. However, this kind of countermeasure for the ELM or incremental learning is seldom reported. This paper considers the situation that a trained SLFN suffers from the coexistence of node fault and node noise. We develop two fault tolerant incremental ELM algorithms for the regression problem, namely node fault tolerant incremental ELM (NFTI-ELM) and node fault tolerant convex incremental ELM (NFTCI-ELM). The NFTI-ELM determines the output weight of the newly inserted node only. We prove that in terms of the training set mean squared error (MSE) of faulty SLFNs, the NFTI-ELM converges. Our numerical results show that the NFTI-ELM is superior to the conventional ELM and incremental ELM algorithms under faulty situations. To further improve the performance, we propose the NFTCI-ELM algorithm. It not only determines the output weight of the newly inserted node, but also updates all previously trained output weights. In terms of training set MSE of faulty SLFNs, the NFTCI-ELM converges, and it is superior to the NFTI-ELM.
[25]
HUANG G B, DING X, ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1-3): 155-163.
[26]
CHEN X, LU B, LI H X, et al. The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder[J]. Psychoradiology, 2022, 2(1): 32-42.
[27]
KUTSANEDZIE F Y H, CHEN Q, SUN H, et al. In situ cocoa beans quality grading by near-infrared-chemodyes systems[J]. Analytical Methods, 2017, 9(37): 5455-5463.
[28]
BIAN X H, LI S J, FAN M R, et al. Spectral quantitative analysis of complex samples based on the extreme learning machine[J]. Analytical Methods, 2016, 8(23): 4674-4679.

419

Accesses

0

Citation

Detail

Sections
Recommended

/