Identification of 2-(2-chlorophenyl)-2-nitrocyclohexanone in the Seized Drugs

WU Wenxian, XU Boyang, ZHANG Hongjian

Forensic Science and Technology ›› 2023, Vol. 48 ›› Issue (3) : 268-274. DOI: 10.16467/j.1008-3650.2023.0004
Topic: forensic toxicology

Identification of 2-(2-chlorophenyl)-2-nitrocyclohexanone in the Seized Drugs

Author information +
History +

Abstract

In October 2021, the Anti-drug Detachment of Wenzhou Public Security Bureau seized a package of yellow substances suspected of drugs in the adjacent sea area, and the case handling unit sent the yellow substances for inspection. To detail the composition of the sample and the structure of the main compound in the sample, it was analyzed by ultra-performance liquid chromatography tandem high resolution mass spectrometry (UHPLC-HRMS), nuclear magnetic resonance (NMR) and Fourier transform infrared spectrometer (FTIR). Initial testing indicated that the main compound of the sample was not matched in our in-house database, which prompted us to deeply analyze the unknown compound by different analytical techniques. The analysis of UHPLC-H RMS provided the precise mass quantity of the unknown compound with a mass accuracy of 2.5 ppm. The characteristic ions (m/z) were 125.0151, 179.0619 and 207.0567, close to those of ketamine, which indicated that the compound may be the analogue of ketamine. Proposed fragmentation mechanism is also present. Further analyses by 1H NMR, 13C NMR, 15N-NMR, distortionless enhancement by polarization transfer spectroscopy (DEPT 135°), proton two-dimensional correlation spectroscopy (1H-1H COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), heteronuclear multiple bonding connectivity spectroscopy (HMBC) detailed the structure of the analogue. 15N-NMR confirmed the presence of nitro-group. DEPT pulse sequence utilized for the assignment of the different types of carbons showed that there were four methylene carbons and a quarternary carbon presented in the molecule of the unknown. Assignments were made via 1H NMR and 13C NMR, assisted by 1H-1H COSY, HSQC, and HMBC. IR has determined the type of such functional groups as carbonyl, nitryl, and chemical bonds of C and Cl by the related absorption characteristics. It was confirmed that the yellow powder was a new precursor 2-(2-chlorophenyl)-2-nitrocyclohexanone. According to the literature, it was found that it could be used to synthesize ketamine. It is the first time of this substance to be detected in suspected drugs in China. However, in recent years, the clinical interest in ketamine has increased due to its positive impact in treating depression and the rapid onset of its antidepressant effect. It led to an increase in publications of the procedure of the synthesis of ketamine, which may be used for illegal synthesis. 2-(2-chlorophenyl)-2-nitrocyclohexanone is an essential precursor of the new synthetic ketamine process for criminals to evade the attack, providing a reference for the control of precursor chemicals and the inspection of related cases in the future.

Key words

forensic toxicology / ketamine precursors / 2-(2-chlorophenyl)-2-nitrocyclohexanone / ultra-performance liquid chromatography tandem high resolution mass spectrometry (UHPLC-HRMS) / nuclear magnetic resonance (NMR) / Fourier transform infrared spectrometer (FTIR)

Cite this article

Download Citations
WU Wenxian , XU Boyang , ZHANG Hongjian. Identification of 2-(2-chlorophenyl)-2-nitrocyclohexanone in the Seized Drugs. Forensic Science and Technology. 2023, 48(3): 268-274 https://doi.org/10.16467/j.1008-3650.2023.0004
氯胺酮在临床上作为麻醉剂使用[1-2]。氯胺酮的滥用造成不小的社会危害[3]。2018年,氯胺酮已成为我国仅次于甲基苯丙胺的第二大流行滥用的合成毒品[4]。目前,国际禁毒公约尚未将氯胺酮列入管制,为了管控氯胺酮非法生产和滥用,我国已将氯胺酮列入《麻醉药品和精神药品品种目录》作为一类精神药品管制,并将氯胺酮的化学前体——邻氯苯基环戊酮[5]和羟亚胺[6]列为《易制毒化学品的分类和品种目录》第一类。
随着我国对制毒行为管控力度的加强,不法分子为逃避打击处理,采用新型制毒工艺。在法庭科学领域,已广泛使用多种仪器联用技术对制毒化学品的结构进行分析 [7-8]。笔者在一起案件的缴获物中检出不明成分,经高分辨质谱-液相色谱质谱联用仪(UHPLC-HRMS)、核磁共振波谱仪(NMR)和傅里叶变换红外技术(FTIR)分析,确认该物质主要成分为2-(2-氯苯基)-2-硝基环己酮(图1)。根据前期有关文献报道[9-10],该物质只需通过还原和甲基化反应就可生成氯胺酮。
Fig.1 The structure of 2-(2-Chlorophenyl)-2-nitrocyclohexanone

图1 2-(2-氯苯基)-2-硝基环己酮结构式

Full size|PPT slide

1 材料和方法

1.1 实验样品

2021年10月,温州市公安局禁毒支队在邻近海域缴获一包疑似毒品的黄色物质,办案单位将黄色物质送检。

1.2 仪器和试剂

Thermo Q Exactive HF高分辨质谱-液相色谱质谱联用仪(UHPLC-HRMS)(美国赛默飞公司);Bruker AVANCE NEO 600核磁共振仪(德国Bruker科技公司);PerkinElmer Spectrum 3傅里叶变换红外光谱仪(美国珀金埃尔默公司);Mettler-Toledo XSR205DU电子天平(瑞士梅特勒-托利多公司);ZKI UC-23超声仪(浙江浙科仪器设备有限公司)。
甲酸为质谱纯试剂(德国Merck Chemicals公司),甲醇为色谱纯试剂(德国Merck Chemicals公司),氘代甲醇-d4、氘代氯仿-d(99.8% D+0.03%TMS,体积百分比)采购自美国剑桥同位素CIL,氯胺酮(99%)采购于上海原思标物科技有限公司。超纯水由Millipore IQ7003超纯水仪(美国密理博公司)制取。

1.3 样品制备

取约10 mg样品置于离心管中,加入10 mL甲醇,超声溶解,涡旋混匀,0.45 μm滤膜过滤,待分析用。取20 μL上述溶液用490 μL甲醇和490 μL水溶液洗后进行UHPLC-HRMS分析。
取约10 mg样品,使用氘代甲醇-d4或者氘代氯仿-d(含0.03%TMS作为内标)充分溶解后进行核磁共振测试分析。
取适量黄色粉末,使用ATR配件直接压片进行红外分析。

1.4 液相色谱-高分辨质谱分析条件

液相条件:Hypersil GOLDTMVANQUISH(100 mm×2.1 mm×1.9 μm);柱温:35 ℃;梯度洗脱:A相为水,B相为甲醇;流速0.4 mL/min;洗脱程序:0~2 min,5% B;2~9.5 min,5% B~80% B;9.5~12 min,80% B;12~12.1 min,80% B~5% B;12.1~15 min,5% B。进样量:1 μL。
质谱条件:电喷雾离子源(HESI),正离子模式(ESI+);离子源温度:320 ℃;电喷雾电压:3 000 V;鞘气流速:45 arb;辅助气:15 arb;吹扫气:0;离子传输线温度:320 ℃。数据分辨率:120 000(Full MS)、30 000(MS/MS);自动增益控制数量:3×106(Full MS)、1×105(MS/MS);最小注入时间:50 ms(Full MS)、50 ms(MS/MS);循环计数:5;MSX计数:1;隔离宽度:2 m/z;NCE(阶梯NCE):20、35、50;最小AGC目标:4×103;强度阈值(intensity threshold):8×104。MS1采集参数:全扫描模式,扫描范围50~750 amu;MS2采集参数:子离子扫描模式,扫描范围50~750 amu。

1.5 核磁共振波谱分析条件

核磁共振谱图由Bruker AVANCE NEO 600在 298 K按照标准采集程序下采集,分别为1H-NMR、13C-NMR、DEPT 135°、15N-NMR、1H-1H COSY、HSQC、HMBC。

1.6 傅里叶变换红外光谱条件

傅里叶变换红外光谱采用PerkinElmer Spectrum 3进行分析。
红外条件:ATR测试;扫描次数:4;分辨率:4 cm-1;扫描范围:4 000~400 cm-1

2 结果与讨论

2.1 液相色谱-高分辨质谱

图2为未知化合物一级高分辨质谱图。该未知化合物主要的特征离子峰m/z 为276.039 1、271.083 9、278.036 0、273.080 8、207.056 7。其中271.083 8和276.039 1为强度最高峰,且两者强度几乎相同。两峰间m/z相差约5,按照经验不能判断276.039 1为准分子离子峰,其可能存在除氢外其他离子加合。同时276.039 1、278.036 0和271.083 9、273.080 8两组数据,两两间m/z相差约2,且后者丰度约为前者的1/3。这表明该未知化合物中可能存在氯元素。
Fig.2 Mass spectra of the sample by UHPLC-HRMS in the MS1 mode

图2 未知化合物一级高分辨质谱图

Full size|PPT slide

表1为未知化合物高分辨质谱主要特征离子峰与氯胺酮质谱数据库比对结果。结果显示该物质的主要离子峰(125.015 1、179.061 9、207.056 7)与氯胺酮的主要碎片离子峰(125.015 4、179.062 2、207.057 4)较为接近,三者相对相差均小于5 ppm。表明未知化合物的碎片离子和氯胺酮的碎片离子相似。
Table 1 Exact masses of product ions of the sample and Ketamine

表1 未知化合物与氯胺酮主要碎片离子峰对比(ESI+

名称 未知化合物 氯胺酮 相对相差/ppm 元素组成
离子峰1 125.0151 125.0152 0.8 C7H6Cl+
离子峰2 179.0619 179.0619 0 C11H12Cl+
离子峰3 207.0567 207.0568 0.5 C12H12ClO+
图3a为未知化合物母离子276.039 1的二级高分辨质谱谱图。图3b为未知化合物母离子271.083 9的二级高分辨质谱谱图。两个二级质谱图的主要碎片离子峰m/z分别为230.046 8和207.057 2,两者差值约为23,m/z 207.056 7的碎片离子峰可能为m/z 230.046 8碎片离子峰的钠离子的加合物。同时推断母离子276.039 1可能为准分子离子峰[M+Na]+。根据精确分子质量及同位素丰度比推测其分子式为C12H12ClNO3Na,理论值偏差2.5 ppm。m/z 271.083 9为准分子离子峰[M+NH4]+
Fig.3 Mass spectra of the sample by UHPLC-HRMS in the MS2 mode (a: 276.0391; b: 271.0839)

图3 母离子276.0391(a)和271.0839(b)的二级高分辨质谱谱图

Full size|PPT slide

2.2 核磁共振分析结果

未知化合物1H-NMR(600 MHz, CD3OD)核磁谱图见补充材料图S1。低场区δH 7.43-7.55(4H, m, H8, H9, H10, H11),多重峰4个质子,为苯环上的质子。高场区δH 3.28-3.31(1H, m, H5a),2.82-2.85(1H, m, H5b),2.67-2.71(2H, m, H2)分别为羰基和硝基取代碳邻位的四个氢质子,而δH 1.87-2.01(2H, m, H3),1.64-1.89(2H, m, H4)分别为脂肪碳链的两组亚甲基信号。
13C-NMR(125 MHz, CD3OD)和DETP(125 MHz, CD3OD)核磁谱图见补充材料图S2、S3。其中碳谱中化学位移δC 200.4为酮羰基碳的特征信号。δC 127.4,129.6,131.1,131.6,131.7和135.3为苯环结构碳信号。
结合DEPT谱图,其中化学位移δC 131.7和δC 135.3信号为季碳,故推断未知化合物中苯环为双取代结构。δC 21.7,27.5,36.5和40.5为亚甲基碳信号。δC 101.5为季碳信号。
未知化合物的HSQC谱图见补充材料图S4。高场区碳谱中δC 40.5信号(C2)与δH 2.67-2.71(H2)多重峰相关。δC 27.5信号(C3)与δH 1.87-1.93(H3b)、1.98-2.06(H3a)多重峰相关。δC 21.7信号(C4)与δH 1.64-1.68(H4a)、1.82-1.93(H4b)多重峰相关。δC 27.5信号(C5)与δH 2.82-2.85(H5b)、3.28-3.31(H5a)多重峰相关。同时从谱图中观察到δH 1.87-1.93处存在两个氢峰的重叠。低场区δC 127.4信号(C9)与δH 7.45(H9)多重峰相关。δC 129.6信号(C8)与δH 7.50(H8)多重峰相关。δC 131.1信号(C10)与δH 7.47(H10)多重峰相关。δC 131.6信号(C11)与δH 7.54(H11)多重峰相关。该结果与1H-NMR积分结果、DEPT135相互印证。
未知化合物的1H-1H COSY谱图见补充材料图S5。高场区H2与H3a(H3b)耦合,H3a(H3b)与H2、H5a耦合,H4a(H4b)与H3a(H3b)、H5a(H5b)耦合。低场区H9与H8耦合,H9和H10耦合,H10和H11耦合。
未知化合物的HMBC谱图见补充材料图S6。谱图中δC 131.7信号(C7)与δH 2.82-2.85(H5b)耦合,从而确定了苯环中与环己酮相连的碳。δC 101.6信号(C6)仅与低场区δH 7.50(H8)耦合,说明苯环中另一取代位于C7的邻位,同时C7另一邻位为H8对应的C8。15N-NMR谱图(补充材料图S7)中有化学位移δN 382信号表明硝基的存在。

2.3 红外光谱分析结果

未知化合物的红外谱图见图4
Fig.4 FTIR ATR spectrums of the sample

图4 未知化合物的红外谱图

Full size|PPT slide

IR中数据1 717 cm-1为C=O伸缩振动吸收峰, 1 545 cm-1为脂肪硝基化合物硝基不对称伸缩振动特征吸收峰,1 358 cm-1为硝基对称伸缩振动特征吸收峰,1 115 cm-1为C-H弯曲振动吸收峰,1 074 cm-1为C-H弯曲振动吸收峰,765 cm-1和715 cm-1为C-Cl伸缩振动吸收峰 [11]

2.4 分析与讨论

根据UHPLC-HRMS数据分析,推测该未知化合物的分子式为C12H12ClNO3。根据1H-NMR和二维核磁谱图分析进一步确定其质子数为12及各质子的归属,13C-NMR和二维核磁谱图分析进一步确定各碳原子的归属(具体数据见表2)。
Table 2 NMR data of the sample in MeOD (δ in ppm)

表2 未知化合物化学位移的归属

化合物结构 位置 碳谱 氢谱
1 200.4 /
2 40.5 2.67-2.71,m
3 27.5 1.87-1.93,m、1.98-2.06,m
4 21.7 1.64-1.68,m、1.82-1.93,m
5 36.5 2.82-2.85,m,3.28-3.31,m
6 101.6 /
7 131.7 /
8 129.6 7.50,m
9 127.4 7.45,m
10 131.1 7.47,m
11 131.6 7.54,m
12 135.3 /
15N-NMR分析可能存在硝基。结合IR光谱数据分析可知,该样品进一步确认含有酮基、硝基。故确认该黄色粉末的主要成分为2-(2-氯苯基)-2-硝基环己酮。
未知化合物质谱(ESI)可能的裂解过程[12]图5。母离子m/z 271.083 9丢失NO2后形成子离子m/z 207.056 7。 m/z 207.056 7发生重排丢失CO后形成m/z 179.061 9。m/z 179.061 9发生负氢迁移反应丢失C4H6得到了氯取代苄基碎片离子m/z 125.015 1。
Fig.5 The proposed ESI fragmentation pathways of product ions

图5 未知化合物质谱(ESI)可能的裂解过程

Full size|PPT slide

氯胺酮的基本合成路线通常包含三步:第一步合成邻氯苯基环戊酮(邻酮),第二步将邻氯苯基环戊酮溴代后与甲基胺反应合成羟亚胺,第三步由羟亚胺加热使分子结构重排后得到氯胺酮。
其中,第二步和第三步合成通常采用单一的合成工艺;第一步邻氯苯基环戊酮的合成通常有两种合成工艺,一种是邻氯苯甲腈与卤代环戊烷的格氏试剂反应,另一种是邻氯苯甲酰氯与环戊烯的傅克酰基化反应[9]
研究者一直在开发更优的氯胺酮合成路线,近年来文献中氯胺酮的新的合成方法时有出现[10,13]。其中最具有代表性的是2017年张辅民研究组报道的硝化合成法[9]。2-(2-氯苯基)-2-硝基环己酮在锌粉和乙酸作用下还原生成2-(2-氯苯基)-2-氨基环己酮,最后用氰基硼氢化钠、甲醛进行甲基化得到氯胺酮(图6)。该合成方法反应条件温和、合成步骤简短。
Fig.6 Synthesis of Ketamine by 2-(2-chlorophenyl)-2-nitrocyclohexanone

图6 由2-(2-氯苯基)-2-硝基环己酮合成氯胺酮

Full size|PPT slide

3 结论

本文通过UHPLC-HRMS、NMR、FTIR等仪器从缴获物中检验鉴定出2-(2-氯苯基)-2-硝基环己酮,为国内首次在缴获物中检出,该物质极有可能用于合成氯胺酮,需要引起监管部门重视。

补充材料

与本文相关的补充数据见: http://www.xsjs-cifs.com/CN/abstract/abstract7133.shtml

References

[1]
WHITE P F, WAY W L, TREVOR A J. Ketamine-its pharmacology and therapeutic uses[J]. Anesthesiology, 1982, 56: 119-136.
[2]
TYLER M W, YOURISH H B, IONESCU D F, et al. Classics in chemical neuroscience: ketamine[J]. ACS Chemical Neuroscience, 2017, 8(6): 1122-1134.
Ketamine, a molecule of many faces, has contributed immeasurably to numerous realms of clinical practice and scientific inquiry. From anesthesia and analgesia to depression and schizophrenia, it continues to shed light on the molecular underpinnings of pain, consciousness, and the pathophysiology of neuropsychiatric disorders. In particular, research on ketamine's mechanism of action is providing new hope in the search for therapies for treatment-resistant depression and affords insights into disorders of glutamatergic dysfunction. In this Review, we will cover aspects of ketamine's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also discuss the captivating history of this molecule, its influence on neuropsychiatry, and its potential to advance the fields of chemical neuroscience and neuropharmacology.
[3]
WOLFF K, WINSTOCK A R. Ketamine: from medicine to misuse[J]. CNS Drugs, 2006, 20(3): 199-218.
[4]
China National Narcotics Control Commission NNCC. Annual report on drug control in China[R]. 2018.
[5]
公安部, 商务部, 海关总署, 等. 关于将邻氯苯基环戊酮增列为第一类易制毒化学品管理的公告[EB/OL]. (2012-09-17)[2022-02-26].
(The Ministry of Public Security of the People’s Republic of China, Ministry of Commerce of the People’s Republic of China, General Administration of Customs People’s Republic, et al. On the o-chlorphenyl cyclopentyl ketone added to the first class of precursor chemicals management notice[EB/OL]. (2012-09-17)[2022-02-26].
[6]
公安部, 商务部, 海关总署, 等. 关于将羟亚胺增列为第一类易制毒化学品管理的公告[EB/OL]. (2008-07-22) [2022-02-06]. http://www.gov.cn/zfjg/content_1052347.htm.
(The Ministry of Public Security of the People’s Republic of China, Ministry of Commerce of the People’s Republic of China, General Administration of Customs People’s Republic, et al. On the hydroxyimine added to the first class of precursor chemicals management notice[EB/OL]. (2008-07-22)[2022-02-06]. http://www.gov.cn/zfjg/content_1052347.htm.
[7]
梁未未, 林贤文, 田源源, 等. 新型易制毒化学品α-乙酰基苯乙酸甲酯的结构确认和检验鉴定方法研究[J]. 刑事技术, 2021, 46(4):331-336.
摘要
目的 通过核磁共振波谱(NMR)确认一种新型易制毒原料的分子结构,并建立气相色谱-质谱联用(GC-MS)和衰减全反射红外光谱(FTIR ATR)的检验鉴定方法。方法 白色粉末样品用氘代氯仿溶解后进行核磁共振氢谱(<sup>1</sup>H-NMR)和碳谱(<sup>13</sup>C-NMR)测试,确认结构;样品用乙酸乙酯溶解后采用GC-MS检测;样品直接用FTIR ATR检测;样品在碱或酸环境中进行水解实验,并用GC-MS检测反应产物。结果 通过核磁共振波谱中的氢谱和碳谱确认了该物质的结构,分子式为C<sub>11</sub>H<sub>12</sub>O<sub>3</sub>,名称为&alpha;-乙酰基苯乙酸甲酯。GC-MS检测得样品中&alpha;-乙酰基苯乙酸甲酯保留时间为12.57min,主要的特征离子峰为m/z 43、90、118、150、192。FTIR ATR检测主要的特征峰为3068、3013、2960、2943、1738、1711。水解实验中,&alpha;-乙酰基苯乙酸甲酯在碱性环境中能100%转化为1-苯基-2-丙酮(P2P),酸性环境中95%转化为P2P。结论 本研究建立了新型易制毒化学品&alpha;-乙酰基苯乙酸甲酯的检验鉴定方法,首次成功验证了该化合物水解转化为P2P,为以后易制毒化学品的管制和相关案件的检验提供参考。
(LIANG Weiwei, LIN Xianwen, TIAN Yuanyuan, et al. Structure confirmation and identification of α-acetyl-methyl phenylacetate, a new precursor chemical for designer drug[J]. Forensic Science and Technology, 2021, 46(4): 331-336.)
<strong>Objective</strong> To confirm with nuclear magnetic resonance (NMR) about the molecular structure of &alpha;-acetyl-methyl phenylacetate (a new precursor chemical for designer drug) that was found from a case, and to establish its identification through GC-MS detection plus an attenuated total reflection infrared spectrometer (FTIR ATR) approach for its qualitative analysis. <strong>Methods</strong> The white powder sample, seized from a case, was dissolved with deuterium chloroform, having its harboring chemical&rsquo;s structure confirmed with the engendered <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra. The sample was also dissolved into ethyl acetate to subject to GC-MS detection. Besides, FTIR ATR was adopted to have the sample tested. Furthermore, the sample was hydrolyzed under both alkali and acid environment, having the reaction products detected into GC/MS analysis. <strong>Results</strong> The structure of the chemical substance seized from the involving case was confirmed through NMR, showing its molecular formula: C<sub>11</sub>H<sub>12</sub>O<sub>3</sub> and systematic name: &alpha;-acetyl-methyl phenylacetate. With GC-MS detection, the &alpha;-acetyl-methyl phenylacetate was shown of its retention time 12.57 min, leaving the main characteristic fragment ions at <em>m</em>/<em>z</em> 43, 90, 118, 150, and 192. For FTIR ATR test, the &alpha;-acetyl-methyl phenylacetate revealed its main characteristic peaks at 3068, 3013, 2960, 2943, 1738 and 1711. Regrading to hydrolysis experiment, the &alpha;-acetyl-methyl phenylacetate can be 100% and 95% converted to P2P (1-Phenyl-2-Propanone) in alkaline and acidic environment, respectively. <strong>Conclusions</strong> The identification of &alpha;-acetyl-methyl phenylacetate (one new precursor chemical for designer drug) has been established here, having resulted in the first-time successful verification about hydrolysis of &alpha;-acetyl-methyl phenylacetate to P2P. The &alpha;-acetyl-methyl phenylacetate, presently an unregulated precursor for drug production, can therefore provide a reliable reference for its controlling and qualitative analysis with the discoveries here.
[8]
赵阳, 胡羽鹏, 常颖, 等. MDMA前体PMK methyl glycidate的定性检验[J]. 刑事技术, 2022, 47(1):96-99.
摘要
目的 利用PMK methyl glycidate来合成胡椒基甲基酮(piperonyl methyl ketone,PMK),可进一步合成3,4-亚甲二氧基甲基苯丙胺(MDMA)。本文首次报道了中国大陆出现的PMK methyl glycidate,并应用气相色谱-质谱联用(GC-MS)和核磁共振(NMR)技术对化合物结构进行了分析与确证。 方法 样品分别用甲醇和DMSO-d<sub>6</sub>提取后,使用GC-MS和NMR进行检测。结果 通过GC-MS分析测得化合物的质谱特征碎片和保留时间信息,并对氢谱碳谱的信号峰进行归属,确定了化合物结构。 结论 该方法简便可靠,能用于PMK methyl glycidate的检验。
(ZHAO Yang, HU Yupeng, CHANG Ying, et al. Qualitative identification of PMK methyl glycidate, MDMA’s precursor[J]. Forensic Science and Technology, 2022, 47(1): 96-99.)
<strong>Objective</strong> To report the first-time emergence of PMK (piperonyl methyl ketone) methyl glycidate (a precursor substance of MDMA) in Chinese mainland through completion of establishing its gas chromatography-mass spectrometry (GC-MS) analytical method and confirming its structure with nuclear magnetic resonance (NMR) which to deliver the compound&rsquo;s hydrogen and carbon spectrums. PMK methyl glycidate is able to synthesize MDMA (3,4- methylenedioxymethamphetamine, a controlled drug capable of seducing the eater into addiction) through transition of PMK. <strong>Methods</strong> The sample was extracted with methanol and DMSO-d6, successively subjected to detection of GC-MS and NMR. <strong>Results</strong> GC-MS rendered the characteristic mass-spectral fragments and retention time of the extracted compound with which NMR assigned the signal peaks of both hydrogen and carbon spectrums, having therewith determined the structure of the chemical substance. <strong>Conclusions</strong> At present, GC-MS technology, combined with mass spectrometric information database retrieval, is one of the most commonly used choices for analyzing drugs and their precursors in forensic laboratories. However, due to the difficulty in obtaining available reference substances against the combination of some drugs and their precursors, the absolute accuracy of retrieval results cannot be guaranteed. NMR approach is independently eligible to confirm the structures of compounds of the reference substances so as to ensure the accuracy of the identification results. In this study, PMK methyl glycidate was identified with GC-MS and NMR, having its <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra analyzed, thus providing a reference for identification of other similar compounds. The method is simple, reliable, and suitable for qualitative analysis of PMK methyl glycidate.
[9]
ZHANG Z Q, CHEN T, ZHANG F M. Copper-assisted direct nitration of cyclic ketones with ceric ammonium nitrate for the synthesis of tertiary α-nitro-α-substituted scaffolds[J]. Organic Letters, 2017, 19(5): 1124-1127.
[10]
ZEKRI N, FAREGHI-ALAMDARI R, MOMENI-FARD B. Synthesis of ketamine from a nontoxic procedure: a new and efficient route[J]. Journal of Chemical Sciences, 2020, 132(1): 1-7.
[11]
刘翠梅, 韩煜, 闵顺耕. 甲基苯丙胺、氯胺酮、海洛因、可卡因红外光谱快速定性分析方法研究[J]. 光谱学与光谱分析, 2019, 39(7): 2136-2141.
(LIU Cuimei, HAN Yu, MIN Shungeng. Rapid qualitative analysis of methamphetamine, ketamin, herion, and cocaine by forier transform infrared spectroscopy (FTIR)[J]. Spectroscopy and Spectral Analysis,2019, 39(7): 2136-2141.)
[12]
FRISON G, ZAMENGO L, ZANCANARO F, et al. Characterization of the designer drug deschloroketamine (2-methylamino-2-phenylcyclohexanone) by gas chromatography-mass spectrometry, liquid chromatography/high-resolution mass spectrometry, multistage mass spectrometry, and nuclear magnetic resonance[J]. Rapid Communications in Mass Spectrometry, 2016, 30(1): 151-160.
[13]
张丽娟, 李宝璋. 邻-氯苯基环戊基酮合成法的改进[J]. 中国药物化学杂志, 1995(1): 47-48.
(ZHANG Lijuan, LI Baozhang. The improvement of the synthetic method of o-chlorophenyl cyclopentyl ketone[J]. Chinese Journal of Medicinal Chemistry, 1995(1): 47-48.)

1950

Accesses

0

Citation

Detail

Sections
Recommended

/