Research Progress on Several Key Issues of Forensic Fingerprint Identification

TANG Wei, CHEN Shitao, ZHANG Limei, ZHANG Zhongliang

Forensic Science and Technology ›› 2023, Vol. 48 ›› Issue (1) : 32-39. DOI: 10.16467/j.1008-3650.2022.0025
Topic: fingerprint identification

Research Progress on Several Key Issues of Forensic Fingerprint Identification

Author information +
History +

Abstract

Fingerprint identification relates to relevant standards, involving specific features, developing technologies and the ever-exerting computer-based fingerprint automatic identification system (AFIS). For fingerprint features, those traditional level-2 ones play their roles in increasing juxtaposition to the level-3 ones with which the systematic basic researches have been already carried out on the related pores about their short-term tissue stability or the trackable others. Besides, the traditional level-2 features have been further subdivided and classified into some rare and more-detailed types. About AFIS, the existing version is facing many technical bottlenecks owing to its expansion of capacity and the recognition of numerous microscopic characteristics. Actually, the AFIS now available in China can only standardize the level-2 features, unable to effectively identify and compare those of level-3's. Even worse, the continuous enrollment of the fingerprint samples is causing the comparison accuracy of AFIS to decline, resulting in occurrence of the close-yet-nonmatched fingerprints which are indicative of two fingerprints, highly similar yet not homologous, commonly appearing more in the triangle zones. Such fingerprints are potential to cause a certain cognitive risk to identify incomplete fingerprints. Promisingly, a fusion algorithm has been developed about fingerprint's level-2 and level-3 features, realizing new functions such as the in vivo fingerprint detection. Furthermore, the rapid development of computer technology and establishment of fingerprint databases have made machine learning fulfilled to apply into fingerprint identification in academic and actual practice home and abroad. Usually, the machine learning takes large-scale fingerprint data as models for training and verification through different systems so that a likelihood ratio evaluation model is therewith developed to deliver the probability about fingerprint identity, hence bringing forth the fingerprint identification conclusion from absolute to relative. This paper summarizes the latest achievements related to the above aspects, putting forward the problems and envisioning the prospects for future progress trend regarding to fingerprint identification.

Key words

fingerprint identification / identification standards / level-2 feature / level-3 feature / likelihood ratio / automatic fingerprint identification system (AFIS) / close-yet-nonmatched

Cite this article

Download Citations
TANG Wei , CHEN Shitao , ZHANG Limei , ZHANG Zhongliang. Research Progress on Several Key Issues of Forensic Fingerprint Identification. Forensic Science and Technology. 2023, 48(1): 32-39 https://doi.org/10.16467/j.1008-3650.2022.0025
指纹作为“物证之首”,在案件侦查过程中发挥着重要作用,指纹鉴定则主要解决其同一认定的问题,科学合理的鉴定方法是指纹发挥作用的关键,因此指纹鉴定领域的相关研究成果对公安司法实践具有指导意义。本文在梳理指纹鉴定传统内容的基础上,侧重报道指纹三级特征的研究进展,总结了当前指纹鉴定存在的一些问题,并基于此提出了未来指纹鉴定的几个发展方向,以期为指纹的科学研究和鉴定实践提供有益的参考。

1 指纹鉴定标准研究进展

起初符合点“数量”思路被作为指纹同一认定的标准,即两枚指纹的符合特征点达到了一定数量即可作出认定结论。对于此标准各国不尽相同,如英国的16个特征,荷兰和法国的12个特征,以及我国据概率推算的8个特征等[1-3],但该思路的科学性和可靠性在近些年受到了国内外学者的质疑。针对此问题,学界自1997—2012年间也尝试提出了一些新的鉴定思路,笔者根据文献[1-8]总结其创新点与局限性(表1)。
Table 1 Fingerprint identification about its ideas, innovative points and limitations adopted from 1997-2012

表1 1997—2012年指纹鉴定思路总结

指纹鉴定标准思路 创新点 局限性
符合点“数量”[1-3] 鉴定思路的初步探索,为之后的思路奠定了基础 只关注二级特征而忽视纹线形态特征,是一种机械、片面和缺乏科学性的思路
符合点“面积—数量”[4] 一定程度上弥补了仅考虑单纯数量而未考虑“特征区域”纹线相符合思路的不足 仍未克服单纯数量思路的固有缺陷,也没有提出具有可操作性的方法
符合点“质量—数量”[5] 将质量纳入了指纹鉴定的考虑范围,鉴定结论科学性有一定提升 理论上缺乏科学论证,实践中缺乏可操作性,且鉴定结论没有摆脱经验主义的束缚而具有随机性和主观性
符合点“质量—面积”[6] 将鉴定结论概率化,一定程度弥补数量质量思路中的随机性和主观性 未考虑指纹变形因素且该思路认定方法设计过于简化;难以判断空位特征是否符合且缺乏鉴定案例的验证
拓扑学思路[7] 可进行数字化处理和分析,且可用于计算机指纹比对检索 缺乏具有可操作性的方案;现场指纹内部的拓扑结构或简单或复杂,针对不同的指纹,拓扑学理论还尚未深入研究
形态学思路[8] 拓展了指纹鉴定的依据,抓住了二级特征以外的更细微的形态延伸,有利于提高鉴定的准确性和可信度 这种方法仍然依靠经验主义,因为该方法仅是将依据一个人的经验变为依据多个人的经验
近年来,国际法庭科学领域提出了基于概率方法的法庭证据评价新模式——似然比(likelihood ratio, LR)评价模式。2012年,荷兰法庭科学研究所(Netherlands Forensic Institute, NFI)以及德国法庭科学领域将LR框架应用于指纹检验评估中[9-10]。2015年,欧洲法庭科学联盟(The European Network of Forensic Science Institutes, ENFSI)发布基于LR框架的指纹最佳实践手册[11]。2018年,美国科学委员会(Organization of Scientific Area Committees, OSAC)也明确提出使用LR框架体系[12]
综上,一些传统指纹鉴定的思路因受困于主观经验或缺乏案例的验证等原因难以应用于实践,而将鉴定结论概率化的似然比评估模式逐渐受到各国认可。可见将概率融入是使指纹鉴定从“认定”“否定”等较为绝对的结论走向相对客观的量化表述的有效方法。

2 指纹鉴定传统内容研究进展

目前我国主要利用二级特征对各类指纹进行鉴定,近年来有学者对二级特征做出了更进一步的分类,并对一些新的特征组合进行了定义。针对硅胶指纹膜指纹也有部分学者对其展开系统研究,并发现了其特征变化等规律。

2.1 指纹二级特征研究进展

二级特征在指纹鉴定中起着重要的作用,充分认识与把握二级特征是指纹鉴定的基础。通常在鉴定开始时先寻找基点,具体包括花纹中心顶点、组合特征、伤疤、质量高的二级特征、皱纹和脱皮等[13]。基点确定后,二级特征的把握就尤为重要。
在2021年,张忠良等[14]对指纹的二级特征做出了进一步的分类和定义。笔者根据文献[14-18]绘制了指纹二级特征新分类图,见图1,整理了新分类的二级特征示意图[14],见图2
Fig.1 The classification of fingerprint's level-2 features

图1 指纹二级特征分类示意图

Full size|PPT slide

Fig.2 The newly-classified level-2 features of fingerprint

图2 新分类的指纹二级特征示意图

Full size|PPT slide

二级特征新分类体系相较传统分类体系而言更完善、细致,在残缺指纹鉴定中可为鉴定人员提供更多可寻找的特征,并且一些新特征出现率低、价值高,可以有效增强鉴定结论的准确性和说服力,也为更多疑难指纹的鉴定带来突破。

2.2 变形、残缺指纹研究进展

2007年,杨蔚等[19]对变形指纹特征变化进行了系统研究,笔者据此总结了常见且典型的变形指纹特征变化(表2)。2016年,林弟华等[20]使用Photoshop对现场变形指纹进行校正,使其可直接用于AFIS比对。2021年,栗赫遥等[21]提出渐变曲率曲面指纹自适应矫正方法,该法可以克服使用拍照固定等方法提取现场曲面客体上指纹发生变形的情况。2022年,李文杰等[22]利用飞行时间二次离子质谱成像技术(TOF-SIMSI)实现了对残缺指纹遗留者的性别判断,且正确率达到90%,这无疑是挖掘残缺指纹信息的重大进展。
Table 2 Varied features of deformed fingerprints

表2 变形指纹特征变化

形成指纹条件 对指纹的影响 正常指纹特征 变形指纹特征
作用力大时 乳突线变粗,分离线连接 短棒 小勾、小桥
起点 分歧
终点 结合
作用力小时 乳突线变细,小犁沟变宽 小眼、小点 消失
作用力方向 皮肤移动方向与作用力方向相反。力点前方:纹线间隔变宽,纹线弧度变小;力点后方:纹线间隔变窄,纹线弧度变大 结合 终点
小勾 短棒、小桥
小眼 分歧或结合
力的三要素共同作用 结合或分歧 一条线、起点、终点
小眼、小勾、小桥 小点
分歧、小勾、小点 小眼
起点与终点与相邻纹线 结合
注:力的三要素共同作用指在力的作用点、方向、大小三方面因素共同作用的二级特征变化。
对于残缺指纹,有学者认为在指纹类型相同、指位相同、特征位置相同、特征之间相互关系稳定、无明显特征差异点和出现个别特殊稳定特征这六个辅助条件下仅靠3或4个二级特征可作出同一认定[23]。而大多数情况下不能同时满足以上六个条件时需借助AFIS筛选出得分高的几个候选指纹,最大程度减少后续人工比对的工作量[24-25]。AFIS能否识别出真正犯罪嫌疑人的指纹并将其列入前列与算法的优劣密切相关。2022年,Tom等[25]报道FBI的新一代指纹识别系统(NGI)中的指纹匹配算法可减少每次搜索的候选指纹数量,并且当首位候选指纹与次位分差超过1 200时,认定首枚指纹的概率超过了99.3%。

2.3 硅胶指纹膜指纹研究进展

2011年,周巍等[26]对硅胶指纹膜在常见客体上所留的手印进行了研究。但其利用橡皮泥作为模具制作硅胶指纹膜,笔者认为这种制膜方式不易精确复制指纹的特征。2017年,潘自勤等[27]利用纳米指纹模型胶制膜,并且研究了以不同力度遗留在不同客体上的指纹膜模拟汗潜指纹与真实手指形成的汗潜指纹的特征差别。2021年,蒋焕等[28]进一步研究了硅胶指纹膜和真实手指形成的印泥指纹的区别。总体来说,硅胶指纹膜形成的指纹相较于真实手指形成的指纹易出现“空白”“断裂”特征,并且乳突纹线边缘不规则,凸凹不平,二级特征反映也较模糊。
指纹二级特征的分类、变形残缺指纹和硅胶指纹膜指纹是传统指纹鉴定中的重要研究内容。通过近年来相关学者的研究发现:二级特征的分类更加细致全面,扩展了鉴定的内容;计算机技术和质谱成像等高新技术的发展使鉴定人员能更好地对变形残缺指纹进行溯源分析,有效辅助对犯罪嫌疑人的画像;硅胶指纹膜指纹的研究方法更加科学严谨,研究内容更全面且对特征变化的认识也由浅入深。以上三方面的进展无疑对指纹鉴定起到了极大的推动作用。

3 指纹鉴定的新视角—三级特征研究进展

三级特征是较二级特征更微观的特征,在二级特征符合点数量少于8个时,仅按照传统的同一认定标准往往会使鉴定陷入困境,此时三级特征的应用便起到了重要的作用[8]。三级特征具体包括:乳突纹线的边缘形态、纹线宽窄、皱纹、汗孔和细点线等特征[29-30]

3.1 国内研究进展

早年有学者提出利用皱纹的特征接合法进行指纹鉴定[31]。2014年,左琦等 [32] 利用10个乳突纹线边缘形态特征辅助4个二级特征对两枚印泥指纹进行了同一认定。2016年,焦彩洋等[33]对汗孔进行了细致分类。2020年,左琦等[34]验证了汗孔的稳定性,通过AFIS观察了同一人同一指相隔20年的两枚指纹发现:汗孔的形态和大小受采集条件及捺印压力的影响较大,形态稳定性较差,但汗孔间的相对位置几乎不变,因此指出在鉴定时应尽量选择距离二级特征较近的汗孔。
2018年,王有民[35]提出应加强对三级特征自身的生物学变化规律的研究,且对三级特征的观察不应在过高的倍率下,过高的放大倍率会影响对三级特征的整体把握。随后他对汗孔位置的生物学变化规律进行了研究,实验结果表明:在表皮更替时间内,汗孔在横、纵两个方向均有变化,且纵向变化大于横向,男性的横纵变化大于女性[36]
2021年,梁娜等[37]又进一步对汗孔大小规律进行研究,其中男性汗孔大小在29.5~116.5 μm 范围内变动,女性则在 29.5~93.5 μm 范围内变动。同年,Shi等[30,38]开发出基于染料水溶液的纤维素膜潜手印提取法,该方法可精确提取出汗孔等三级特征,同时作者将相邻汗孔之间距离的频率分布定义为参数“FDDasp”,并认为此参数可以应用于人身同一认定。

3.2 国外研究进展

国外学者对三级特征的基础研究较为全面。2011年,Oklevski[39]对比了同一人同一指相隔48年的两枚指纹,发现汗孔虽然在大小和形状上会发生微小变化,但汗孔之间的空间相对位置不会改变。2019年,Monson等[40]对若干不同年龄段的人的手指进行了8年的追踪研究,发现三级特征中的细点线会逐渐发育变成小棒,皱纹也会出现数量变化,证明了三级特征相较于一、二级特征的稳定性差,但在一定时间内会保持自身的相对稳定性,并能应用于指纹鉴定当中。且该研究指出在指纹鉴定中不应过分在意特征的微小变化,应综合全局特征进行比对。
对于计算机与指纹技术结合的研究,早在2004年,Kryszczuk等[41]利用洛桑大学警察科学研究所的指纹数据库对三级特征进行了比对实验,实验结果表明:在残缺且能观察到三级特征的指纹中,依靠三级特征可以提高该指纹的识别力。2009年,Vatsa等[42]提出了利用DSm算法将指纹二、三级特征进行增强融合,该算法将AFIS对捺印指纹的比对能力提高了3%。2020年,Alshdadi等[29]利用Q-FFF因子将指纹一、三级特征融合实现了指纹的活体检测,该研究可使门禁打卡系统识别出真正手指的指纹,能有效解决利用硅胶指纹膜和 3D打印指纹套等假指纹破解类似的生物安全识别系统的问题。2021年,Agarwal等[43]提出了一种基于Lindeberg尺度自动选择方法的指纹孔隙提取算法,该算法可将指纹的汗孔特征提取出来,显著提高了指纹的鉴别率。
国内外对于指纹三级特征的研究,揭示了三级特征具有不断变化、总体稳定的特点[35]。同时,人工智能等高新技术以及指纹显现技术的快速发展为指纹鉴定的突破带来了契机,也为三级特征未来的应用研究打下了坚实基础。

4 指纹鉴定的问题

随着指纹大库的建立,AFIS中的指纹档案已达到百万量级。大容量的AFIS在指纹鉴定中发挥重要作用的同时也暴露出新的问题:
1)指纹相似异源性问题。即两枚不同源的指纹存在局部高度相似的情况,并且此情况易出现在指纹的三角区域。2020年,艾乐[44]报道斗形纹三角区域的高度相似异源指纹的出现率为1.5‰,并且出现率与特征标注数量呈反比关系。2021年Li[45]将20组60个不同质量的指纹在696.4万人的AFIS中经245次查询后发现了21枚高度相似异源指纹。
2)鉴定人认知偏差。2006年,Dror等[46]报道具有17年鉴定经验的指纹专家也会因外界信息干扰而对同一枚指纹作出不同的鉴定意见。2011年,他又发现改变指纹鉴定顺序也会影响到鉴定人员对指纹特征点的分析能力[47]
3)鉴定程序不规范导致鉴定错误。如勘查笔录描述的指纹在现场桌面提取,而鉴定结论却描述指纹在玻璃上提取,二者矛盾造成鉴定结论可信度大打折扣[48]。另有学者发现,在实际工作中,许多鉴定人员常存在忽视初步检验直接寻找二级特征进行同一认定、先通过样本指纹特征寻找现场手印特征、牵强附会地解释差异点和对特殊指纹认识不足等问题,进而导致鉴定错误[49]
因此指纹鉴定人员应严格遵循指纹鉴定的流程,不应盲目自信,在特征数量少的残缺指纹比对中应格外重视指纹相似异源性问题。此外,鉴定人员也应充分认识指纹鉴定的严肃性并有规范鉴定的意识,不一味依靠AFIS,对待每一次鉴定时应摒弃“刻板印象”,客观地比对两枚指纹。

5 展望

荷兰等部分欧美国家已将似然比方法应用成熟,实现了指纹鉴定概率化,而统计二级特征的分布规律是应用似然比鉴定方法的必由之路[3]。2022年,高梦婷等[50]提出基于 YOLOv5的指纹二级特征检测法,为自动统计二级特征分布规律奠定了技术基础,未来我国相关研究人员可在此基础上继续探索并建立与国际接轨的LR框架体系。
对于三级特征中汗孔的研究已经较为完善,但诸如皱纹特征短期的组织稳定性和形态的特定性等方面还缺乏相关系统的研究。并且目前学界多是针对三级特征本身的研究,尚未将三级特征中的皱纹和细点线等综合应用于指纹鉴定当中,相信未来随着三级特征全面深入的研究,将其引入指纹鉴定中并侦破积案要案指日可待。
AFIS是鉴定中常需借助的系统,但随着AFIS容量不断升级、比对精度不断下降,并且需要不断追加硬件设备维持比对效率,AFIS的发展已面临多处技术瓶颈[51]。且当前AFIS只能针对二级特征进行特征标画,对三级特征却无能为力,随着三级特征的深入研究,未来将三级特征作为二级特征的辅助特征会成为一种趋势,因此需要将新技术融入AFIS当中[52]。同时也可将近年来发展迅速的机器学习及人工智能等技术与指纹自动识别技术相融合,将AFIS的发展提升到一个全新的高度。

References

[1]
罗亚平. 谈指纹鉴定特征数量标准[J]. 公安大学学报(自然科学版), 2001(6): 1-3.
(LUO Yaping. On the quantitative standard of fingerprint identification features[J]. Journal of People's Public Security University of China (Science and Technology), 2001(6): 1-3.)
[2]
彭霄. 指纹鉴定标准研究[J]. 中国司法鉴定, 2012, 64(5): 126-129, 135.
(PENG Xiao. On the standard of fingerprint identification[J]. Chinese Journal of Forensic Sciences, 2012, 64(5): 126-129, 135.)
[3]
胡卫平. 指纹鉴定标准及鉴定结论概率化研究[J]. 证据科学, 2012, 20(4): 480-488.
(HU Weiping. Study on the criterion of fingerprints identification and the probability of fingerprint identification conclusion[J]. Evidence Science, 2012, 20(4): 480-488.)
[4]
胡志军. 浅议指纹鉴定标准[J]. 刑事技术, 2009, 207(5): 41-42.
(HU Zhijun. A brief discussion on fingerprint identification standards[J]. Forensic Science and Technology, 2009, 207(5): 41-42.)
[5]
李力, 黄镇国. 对指纹鉴定标准问题的探讨[J]. 刑事技术, 2005(4): 50-52.
(LI Li, HUANG Zhenguo. Discussion on fingerprint identification standard[J]. Forensic Science and Technology, 2005(4): 50-52.)
[6]
吕导中. 基于指纹面积和特征质量的指纹鉴定量化标准研究[J]. 中国人民公安大学学报(自然科学版), 2008(2): 27-29.
( Daozhong. Research on quantitative standard of fingerprint identification based on fingerprint area and feature quality[J]. Journal of People's Public Security University of China (Science and Technology), 2008(2): 27-29.)
[7]
刘持平. 拓朴学与指纹同一检验理论[J]. 江苏公安专科学校学报, 2001(3): 164-166.
(LIU Chiping. Topology and fingerprint identity test theory[J]. Journal of Jiangsu Police Institute, 2001(3): 164-166.)
[8]
ASHBAUGH D R. Ridgeology, modern evaluative friction ridge identification[R]. Forensic Identification Support Section, Royal Canadian Mounted Police, 1999.
[9]
LEEGWATER A J, MEUWLY D, SJERPS M, et al. Performance study of a score-based likelihood ratio system for forensic fingermark comparison[J]. Journal of Forensic Sciences, 2017, 62(3): 626-640.
In this article, the performance of a score-based likelihood ratio (LR) system for comparisons of fingerprints with fingermarks is studied. The system is based on an automated fingerprint identification system (AFIS) comparison algorithm and focuses on fingerprint comparisons where the fingermarks contain 6-11 minutiae. The hypotheses under consideration are evaluated at the level of the person, not the finger. The LRs are presented with bootstrap intervals indicating the sampling uncertainty involved. Several aspects of the performance are measured: leave-one-out cross-validation is applied, and rates of misleading evidence are studied in two ways. A simulation study is performed to study the coverage of the bootstrap intervals. The results indicate that the evidential strength for same source comparisons that do not meet the Dutch twelve-point standard may be substantial. The methods used can be generalized to measure the performance of score-based LR systems in other fields of forensic science.© 2017 American Academy of Forensic Sciences.
[10]
MEUWLY D, VELDHUIS R. Forensic biometrics: from two communities to one discipline[C]// 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG). IEEE, 2012: 1-12.
[11]
European Fingerprint Working Group. Best practice manual for fingerprint examination[R]. European Network of Forensic Science Institutes (ENFSI), 2015.
[12]
谭铁君. 指纹证据的量化评价模式[J]. 刑事技术, 2020, 45(6): 616-621.
摘要
国际上,法庭科学证据的检验鉴定正朝向定量化和客观化方向转变。传统的指纹鉴定一直采用基于特征相似性比较的“认定、否定、无结论”评价模式。随着国际上对法庭科学的准确性、可靠性、客观性、透明性和可重复性等科学性要求的不断提高,指纹证据的检验评价也开始向以量化评价为核心的似然比框架模式转变。本文首先对传统的“ACE-V”指纹比对识别方法及其证据评价模式进行分析总结,然后从国际上对法庭证据技术的科学性要求出发,对指纹证据量化评价新模式的核心内容、主要方法、国际研究进展以及司法实践情况进行综述评析,重点对似然比方法体系、指纹特征的量化提取方法、特征的统计模型进行评述,最后结合指纹自动识别技术的发展,对其实践应用和发展趋势进行展望。
(TAN Tiejun. On quantitative evaluation of fingerprint evidence[J]. Forensic Science and Technology, 2020, 45(6): 616-621.)
Forensic evidence is internationally going into quantification and objectivity with its examination and identification. Traditionally, the notion of “identification, exclusion and inconclusiveness” is the evaluation criterion about forensic evidence based on the comparison between the evidential materials from the scene and the suspect’s. With the increasing demand for the scientificity of forensic evidence and progresses of technologies, evaluation is presently paid more attentions on the eligibility for the relevant methods of examination and identification, drawing focuses on accuracy, reliability, objectivity, transparency and repeatability. Following the trend, the fingerprint evidence is also being assessed from qualitative feature similarity to the likelihood ratio quantitation. In this paper, the analytic summarization was first of all made on the traditional “ACE-V” fingerprint identification approaches and the relevant evidence evaluation framework. Successively, the new paradigms of fingerprint evidence evaluation were reviewed about the core contents, main approaches, international research development and forensic practice on the basis of introduction to the international requirements of forensic technological scientificity, having stressed into the fingerprint features that were scaled from the likelihood ratio framework, quantitative extraction methods and statistical models. Finally, the fingerprint automatic identification technology was expatiated about its development, practical application and progressive trend.
[13]
姜秀峰, 鹿宇华. 手印细节特征定位点的分类[J]. 刑事技术, 2014, 235(2): 57-59.
(JIANG Xiufeng, LU Yuhua. Classification of loci of fingerprint details[J]. Forensic Science and Technology, 2014, 235(2): 57-59.)
[14]
张忠良, 宋丹, 张丽梅, 等. 乳突纹线细节特征及其组合研究[J]. 中国刑警学院学报, 2021, 160(2): 93-98.
(ZHANG Zhongliang, SONG Dan, ZHANG Limei, et al. Study on detail features and combination of friction ridge[J]. Journal of Criminal Investigation Police University of China, 2021, 160(2): 93-98.)
[15]
刘峻峰. 关于指纹细节特征两个问题的探讨[J]. 刑事技术, 2011, 220(5): 45-47.
(LIU Junfeng. Discussion on two problems of fingerprint detail features[J]. Forensic Science and Technology, 2011, 220(5): 45-47.)
[16]
钱煌贵, 施少培, 孙年峰. 可见指印特征的新分类研究[J]. 中国司法鉴定, 2019, 104(3): 89-91.
(QIAN Huanggui, SHI Shaopei, SUN Nianfeng. New classification of visible fingerprint features[J]. Chinese Journal of Forensic Sciences, 2019, 104(3): 89-91.)
[17]
郭卫平. 乳突纹线的细节特征——“间断”在指纹检验中的应用研究[J]. 刑事技术, 2017, 42(3): 199-202.
摘要
目的 研究指纹乳突纹线的一种细节特征——“间断”,考察其应用于指纹检验鉴定的价值。方法 对5000份十指捺印指纹乳突纹线细节特征进行观察统计和分析,总结“间断”特征的特性以及与其它几种常见乳突纹线特征的区别,并将该特征应用于一个实际案例中,验证效果。结果 “间断”特征具有客观存在、印痕反映较好、稳定、稀有等特性且容易辨识,可用于案件指纹检验。结论 针对特定案例,当待检指纹存在“间断”特征时,可利用该特征提高指纹检验鉴定效率。
(GUO Weiping. Role of discontinuous friction ridge in fingerprint identification[J]. Forensic Science and Technology, 2017, 42(3): 199-202.)
Discontinuousness is at times observed in the friction ridge of fingerprint, thereby very potential to assist in fingerprint identification as one minutial trait. The discontinuousness is supposed to come from a big sweat pore lying on a friction ridge that has been cut into two separate parts. According to observation, there are about 24.1% showing such discontinuousness among 5000 fingerprints, demonstrating its objectivity, stability and comparative rarity. With its good moulage and recognizability, the discontinuous friction ridge can be used in fingerprint examination, helping one actual case to be solved. Therefore, discontinuousness, when found in a friction ridge of one specific case, should be not neglected but utilized.
[18]
吉永成. 纹线中空特征在指纹比对中的应用[J]. 刑事技术, 2013, 233(6): 36-38.
(JI Yongcheng. Application of “hollow ridge” feature of fingerprint in fingerprint comparison[J]. Forensic Science and Technology, 2013, 233(6): 36-38.)
[19]
杨蔚, 徐同祥. 变形手印的检验鉴定[J]. 江苏警官学院学报, 2007, 192(6): 47-48.
(YANG Wei, XU Tongxiang. Inspection and identification of transmutative fingerprint[J]. Journal of Jiangsu Police Institute, 2007, 192(6): 47-48.)
[20]
林弟华, 张明. 变形指纹的矫正与应用研究[J]. 刑事技术, 2016, 41(6): 515-516.
摘要
以直接粘取法制备标准指纹,作为变形指纹研究的比较参照和依据,计算变形指纹的变形量,确定指纹变形之间存在的关联规律,即指纹在其相互垂直方向上的变形量基本相同,但以相反方式呈现。在计算机指纹自动识别系统中,若现场指纹与入库的捺印指纹越接近,其比对得分就越高;或者其细节特征数量越多,得分亦越高。但有时现场指纹因变形并不能直接与库存指纹相匹配。故在提取的现场指纹细节特征数量不能增多时,若能对现场指纹作矫正,使其提高应有的分值,则可提高比中率,增加物证的证据力。
(LIN Dihua, ZHANG Ming. Analysis and application of distorted fingerprint[J]. Forensic Science and Technology, 2016, 41(6): 515-516.)
Standard fingerprint was made by the direct picking-up and was taken as the reference and reliance for both the study and comparison of distorted fingerprint. The variance between standard fingerprint and the distorted one was calculated so as to determine the regularity among the variants. It was found that the variance is inversely equal on the mutually vertical directions of a fingerprint. For a scene fingerprint, the closer it matches to the stored one in computer automatic fingerprint identification system, and the more detailed features it discloses the higher matching score it gets. However, there are many occasions where the scene fingerprint, due to distortion, is not able to match to the one in computer automatic fingerprint identification system. Under occurrence of these circumstances plus no more available minutiae, a scene fingerprint, albeit distorted, can still be about to close to its original appearance when eliminated its variance through calibration, therefore its matching rate will be elevated and evidential power enhanced accordingly.
[21]
栗赫遥, 高畅, 蔡能斌, 等. 渐变曲率曲面指纹的自适应校正方法实验研究[J]. 刑事技术, 2021, 46(4): 342-348.
摘要
目的 提出一种基于Python平台的校正方法,解决曲面客体上指纹在采用光学方法提取后发生变形的问题。方法 根据标尺刻度的变化,自适应地求得最佳匹配曲面以及任意一点的放大率,通过逆变换消除曲面客体造成的畸变。结果 使用该方法校正曲率半径固定的简单曲面上指纹,结果的平均误差为5.3%,使用HGXJ-360曲面物证图像展平系统校正结果的平均误差为7%。使用该方法校正曲率半径变化的复杂曲面上的指纹,亦能取得显著的校正效果。结论 本文提出的渐变曲率曲面指纹的自适应校正方法能够自动化地校正各种曲面客体上的指纹,在简单曲面客体上其效果优于现有的成熟的校正方法,在复杂曲面客体上亦能得到优异的效果,能够为现场勘查中各类曲面物体上指纹的无损提取提供有力辅助。
(LI Heyao, GAO Chang, CAI Nengbin, et al. Tentative exploration about self-adaptive correction into fingerprints extracted from surfaces of gradual curvature[J]. Forensic Science and Technology, 2021, 46(4): 342-348.)
<strong>Objective</strong> A Python-based self-adaptive correction was to propose for fingerprints that had been extracted from the surfaces of gradual curvature so that the difficult problem could be solved about identifying the deformed fingerprints after optical development and visualization on curving objects. <strong>Methods</strong> A calibration-engraved scaling ruler was used to measure the curvature surface where fingerprint was deposited. Based on the measurement and calculation of the deformation from the ruler&rsquo;s calibration, a correction approach was set up through Python3.4 programming plus devisal so that both the optimal matching surface and magnification rate were to figure out adaptively, making the distortion eliminated with reverse transformation. Therefore, a revision can be carried out into bringing the fingerprint to proximity to its original pattern. <strong>Results</strong> The fingerprints on simple curving radius-fixed surfaces have been able to correct with obvious effect under the average error of 5.3%, contrasting to the 7% from HGXJ-360, the Curvature-surface Physical Evidence Image Flattening System developed by Evidential Materials Authentication Center of Shanghai Public Security Bureau. For the fingerprints on complex surfaces of changing curvature radii, significant correction effects have even been attained furthermore. <strong>Conclusion</strong> The correction approach established here can automatically revise the fingerprints on various curved surfaces towards proximity to their original patterns, demonstrating effective for fingerprints on both the simple radius-fixed curvature surfaces and complex radius-changing ones, therefore capable of providing strong supports with nondestructive extraction of fingerprints on various surfaces in crime scene investigation.
[22]
李文杰, 孙令辉, 游伟, 等. 基于指纹物质飞行时间二次离子质谱成像信号的指纹遗留人性别识别[J]. 分析化学, 2022, 50(1): 112-118.
(LI Wenjie, SUN Linghui, YOU Wei, et al. Gender recognition of fingerprint remnant based on time-of-flight secondary ion mass spectrometry imaging signal of fingerprint substance[J]. Chinese Journal of Analytical Chemistry, 2022, 50(1): 112-118.)
[23]
郭承沫, 贡宗友, 吕中航. 残缺指纹少量特征的同一认定[J]. 刑事技术, 1997 (2): 24-25.
摘要
我们把只出现3、4个特征的残缺指纹称为少量特征指纹。在指纹检验中,常常会遇到对只有少量特征的残缺指纹的检验。有关权威专业刊物曾报导:指纹的同一认定必须有6个以上相同的特征。由于现场条件的限制、显现固定手印方法落后、手印局部持征较少等原因,所提取的现场指纹特征出现得极少,达不到同一认定的足够数量。笔者认为,在如下特殊条件的配合下,仅凭3、4个特征相同就可以作出同一认定结论。
(GUO Chengmo, GONG Zongyou, Zhonghang. The same identification of a few features of incomplete fingerprints[J]. Forensic Science and Technology, 1997 (2): 24-25.)
[24]
FAKIHA B S. How technology has improved forensic fingerprint identification to solve crimes[J]. International Journal of Advanced Science and Technology, 2020, 29(5): 746-752.
[25]
TOM K R, KNORR K B, DAVIS C E. Next generation identification system: latent print matching algorithm and casework practices[J/OL]. Forensic Science International. [2022-04-06]. https://doi.org/10.1016/j.forsciint.2022.111180.
[26]
周巍, 卢晓康. 指纹膜痕迹实验研究[J]. 警察技术, 2011(1): 30-33.
(ZHOU Wei, LU Xiaokang. Experimental study on fingerprint film trace[J]. Police Technology, 2011(1): 30-33.)
[27]
潘自勤, 郑传波. 仿生指纹膜印痕特征研究[J]. 中国人民公安大学学报(自然科学版), 2017, 23(4): 5-9.
(PAN Ziqin, ZHENG Chuanbo. Study on imprinting characteristics of bionic fingerprint film[J]. Journal of People's Public Security University of China (Science and Technology), 2017, 23(4): 5-9.)
[28]
蒋焕, 侯硕, 高胜极. 硅胶仿生指纹膜印泥痕迹特征研究[J]. 刑事技术, 2021, 46(1): 58-61.
摘要
目的 研究硅胶仿生指纹膜印泥痕迹特征与真实指纹印泥痕迹特征的差异,为鉴定硅胶仿生指纹膜印泥痕迹提供依据。方法 首先利用液态硅胶制作仿生指纹膜,然后用仿生指纹膜和手指在相同情况下蘸取印泥,分别以轻、中、重3种力度在A4纸上垂直按压形成印泥指印,并对其拍照提取,比较仿生指纹膜印泥痕迹与真实指纹印泥痕迹的特征差异。结果 仿生指纹膜印泥痕迹多见&ldquo;空白&rdquo;&ldquo;断裂&rdquo;,边缘部分不规则、凹凸不平,小犁沟宽窄程度随力度变化明显,细节特征反映不清楚;真实指纹印泥痕迹自然、纹线较连贯。结论 仿生指纹膜印泥痕迹特征与真实指纹印泥痕迹特征之间存在差异,根据两者之间的特征差异可以帮助鉴别仿生指纹膜印泥痕迹。
(JIANG Huan, HOU Shuo, GAO Shengji. Characteristics of marks imprinted from inked silicone biomimetic fingerprint film[J]. Forensic Science and Technology, 2021, 46(1): 58-61.)
<strong>Objective</strong> To discern the difference of characteristics between the imprinted marks from silicone bionic fingerprint film and real finger so as to provide a basis for identification of silicone bionic fingerprint impresses. <strong>Methods</strong> The bionic fingerprint film was made with liquid silicone, having it pressed onto inkpad along with human real finger so that such two kinds of fingerprints were made onto A4 paper where both the silicone fingerprint film and human finger were vertically impressed under three forces of small, moderate and intensive strength. The so-obtained two kinds of fingerprints were photographed and extracted, having their features and differences compared. <strong>Results</strong> The imprints from the bionic fingerprint films were mostly seen of &ldquo;blank&rdquo; and &ldquo;broken&rdquo; signs, revealing irregular and uneven edges, having various breadths of small furrows with the pressing force strength changing yet no presence of distinct nuance. Real fingerprints showed natural and coherent lines. <strong>Conclusion</strong> There are differences between the characteristics of silicone bionic fingerprint film impresses and real fingerprints, therewith capable of being used for identification of silicone bionic fingerprint impresses.
[29]
ALSHDADI A A, MEHBOOB R, DAWOOD H, et al. Exploiting level 1 and level 3 features of fingerprints for liveness detection[J]. Biomedical Signal Processing and Control, 2020, 61: 102039.
[30]
SHI M, ZHAO L, CHEN H, et al. Fast and quantitative analysis of level 3 details for latent fingerprints[J]. Analytical Methods, 2021, 13(46): 5564-5572.
Level 3 details play essential roles in practical latent fingerprint (LFP) identification. To reliably extract reproducible and identifiable level 3 features, high-resolution images of fingerprints with adequate quality are required. Conventional methods for acquiring level 3 details often involve specific pretreatment, intricate peripheral, leading to time-consuming analysis. Herein, we simply used water to develop the sebaceous LFPs deposited on nitrocellulose (NC) membranes with only one step, and then the high-resolution (2048 pixels per inch) optical micrographs were captured to reflect the live fingertip with high fidelity. From the pictures, level 3 features, including all dimensional attributes of the ridges and pores such as number, size, location, shape, and edge contour can be extracted accurately and reproducibly. Among them, qualitative features (the structures of ridge edges) and several quantitative characteristics (the number and the relative location of sweat pores) exhibit good reproducibility. Remarkably, we proposed a new parameter termed "frequency distribution of the distance between adjacent sweat pores", short form "FDDasp", which was further proved highly identifiable in different individuals, enabling the successful distinguishment between two fragmentary fingerprints with similar level 2 structures. We believe that this methodology provides a fast and quantitative analytical paradigm for latent fingerprint identification at level 3 details.
[31]
欧阳常青. 手印鉴定中接合比对检验法的应用研究[J]. 中国司法鉴定, 2005(4): 52-53, 56.
(OUYANG Changqing. Study on the application of conjugation test in fingermark identification[J]. Chinese Journal of Forensic Sciences, 2005(4): 52-53, 56.)
[32]
左琦. 用乳突纹线边沿细节特征辅助指纹鉴定[J]. 湖北警官学院学报, 2014, 27(7): 175-176.
(ZUO Qi. Fingerprint identification was assisted by detailed features of friction ridge[J]. Journal of Hubei University of Police, 2014, 27(7): 175-176.)
[33]
焦彩洋, 张晓梅. 汗孔特征的观察与识别[J]. 中国司法鉴定, 2016, 87(4): 44-48.
(JIAO Caiyang, ZHANG Xiaomei. Analysis of sweat pore features of fingerprints[J]. Chinese Journal of Forensic Sciences, 2016, 87(4): 44-48.)
[34]
左琦, 周宇. 基于AFIS的汗孔特征稳定性研究[J]. 中国司法鉴定, 2020, 113(6): 55-59.
(ZUO Qi, ZHOU Yu. Study on the stability of pore features based on AFIS[J]. Chinese Journal of Forensic Sciences, 2020, 113(6): 55-59.)
[35]
王有民. 指纹三级特征的组织学基础、影响因素与实用性价值分析[J]. 中国人民公安大学学报(自然科学版), 2018, 24(3): 7-10.
(WANG Youmin. Analysis of histological basis, influencing factors and practical value of fingerprint level-3 features[J]. Journal of People's Public Security University of China (Science and Technology), 2018, 24(3): 7-10.)
[36]
王有民, 曹吉明, 梁娜, 等. 指纹三级特征中汗孔位置的生物学变化规律研究[J]. 刑事技术, 2020, 45(5): 480-488.
(WANG Youmin, CAO Jiming, LIANG Na, et al. Biological predisposition of sweat pore location in third level characteristics of fingerprints[J]. Forensic Science and Technology, 2020, 45(5): 480-488.)
[37]
梁娜, 王有民, 曹吉明. 表皮更替时间内指纹汗孔大小变化规律研究[J/OL]. 刑事技术. [2021-10-29]. DOI:10.16467/j.1008-3650.2021.0147.
(LIANG Na, WANG Youmin, CAO Jiming. Regular size variation of fingerprint-housing sweat pore during epidermal replacement[J/OL]. Forensic Science and Technology. [2021- 10-29]. DOI:10.16467/j.1008-3650.2021.0147.)
[38]
SHI M, WEI Q, TIAN L, et al. Label-free physical and electrochemical imaging of latent fingerprints by water and SECM[J]. Electrochimica Acta, 2020, 350: 136373.
[39]
OKLEVSKI S. Poroscopy: qualitative and quantitative analysis of the 2nd and 3rd level detail and their relation[J]. Fingerprint Whorld, 2011, 37(145): 170-181.
[40]
MONSON K L, ROBERTS M A, KNORR K B, et al. The permanence of friction ridge skin and persistence of friction ridge skin and impressions: a comprehensive review and new results[J]. Forensic Science International, 2019, 297: 111-131.
This study addresses the permanence and persistence of friction ridges and the persistence of impressions made from these friction ridges over months and years. Permanence is the unchanging presence and appearance of friction ridge arrangements and their attributes between recurring observations of the skin. Permanence was evaluated from direct photographs of fingers collected over a period of 30-45 days (covering one or more skin regeneration cycles) as well as after 8 or more years had elapsed. Persistence embodies the operational concept of whether or not a pair of images displays sufficient similarity upon which to base an informed decision that they were made by the same finger, while acknowledging certain dissimilarities or distortions due to friction ridge physiology, image capture, matrix, substrate, and applied pressure. Persistence applies to both friction ridge skin and impressions made from these friction ridges. Permanence and persistence of skin were assessed from direct photographs of fingers taken two months apart and from finger photographs separated by an interval of at least 8 years. Permanence and persistence were also assessed from impressions taken over 4 months, as well as those separated by 8-53 years. Variability due to capture method was assessed by using four image capture methods over a four month period: direct photography of fingers, impressions captured by ink, holographic imaging, and live scan. Qualified latent fingerprint examiners assessed all changes observed over time, as well as any limitations imposed by capture method. The practice of comparison and identification of fingerprint impressions was upheld, as was the prevailing use of the word persistence to describe stability of friction ridges. All photographs and impressions of the same finger were identifiable as originating from the same source. Within all the periods of observation, level 1 detail was permanent and persistent. Persistence, but not permanence, was supported for level 2 detail. Notably, the small changes observed were only in appearance; there were no changes in the presence of new, or absence of existing, minutiae. Level 3 details of ridge edge shape and pore presence were neither permanent nor persistent. Ridge width was permanent and persistent. Incipient ridges were neither permanent nor persistent.Copyright © 2019. Published by Elsevier B.V.
[41]
KRYSZCZUK K M, MORIER P, DRYGAJLO A. Study of the distinctiveness of level 2 and level 3 features in fragmentary fingerprint comparison[C]// International Workshop on Biometric Authentication. Springer, Berlin, Heidelberg, 2004: 124-133.
[42]
VATSA M, SINGH R, NOORE A, et al. Quality-augmented fusion of level-2 and level-3 fingerprint information using DSm theory[J]. International Journal of Approximate Reasoning, 2009, 50(1): 51-61.
[43]
AGARWAL D, BANSAL A. A utility of pores as level 3 features in latent fingerprint identification[J]. Multimedia Tools and Applications, 2021, 80(12): 1-20.
[44]
艾乐. 斗型纹三角区域相似异源研究——基于百万级数据库[D]. 北京: 中国人民公安大学, 2020.
(AI Le. Close non-matching study on delta region of whorl-based on million grade database[D]. Beijing: People's Public Security University of China, 2020.)
[45]
LI K, WU D, AI L, et al. The influence of close non-match fingerprints similar in delta regions of whorls on fingerprint identification[J]. Journal of Forensic Sciences, 2021, 66(4): 1482-1494.
Fingerprint identification errors may be due to the high similarity of fingerprints from different sources, especially when queries are conducted in a large database with the application of the Automatic Fingerprint Identification System (AFIS). In this study, a database of ten-prints of 6.964 million individuals was used; 20 sets of 60 simulated fingermarks of different qualities were used and compared with fingerprints from the database. A total of 245 queries were conducted based on both the quality of each fingermark and the number of minutiae. Four types of results were obtained from these queries on the large database, and were categorized as follows: (A) Neither Same Source nor Close Non-Match appears in the candidate list, (B) Only Same Source appears, (C) Only Close Non-Matches appear, and (D) Both Same Source and Close Non-Matches appear. When the quality of the fingermark was improved, more minutiae could be identified, and the degree of accuracy of the placement as well as orientation was higher. As a result, highly Close Non-Match fingerprints appeared; this made it harder to distinguish these fingerprints from Same Source fingerprints, especially in the large database. We concluded that more highly Close Non-Matches might appear when the database is consistently expanded, and an increasing number of Close Non-Matches might be found with a higher ranking and score than the Same Source; this would make the identification harder for examiners and might increase the possibility of identification errors.© 2021 American Academy of Forensic Sciences.
[46]
DROR I E, CHARLTON D, PÉRON A E. Contextual information renders experts vulnerable to making erroneous identifications[J]. Forensic Science International, 2006, 156(1): 74-78.
We investigated whether experts can objectively focus on feature information in fingerprints without being misled by extraneous information, such as context. We took fingerprints that have previously been examined and assessed by latent print experts to make positive identification of suspects. Then we presented these same fingerprints again, to the same experts, but gave a context that suggested that they were a no-match, and hence the suspects could not be identified. Within this new context, most of the fingerprint experts made different judgements, thus contradicting their own previous identification decisions. Cognitive aspects involved in biometric identification can explain why experts are vulnerable to make erroneous identifications.
[47]
DROR I E, CHAMPOD C, LANGENBURG G, et al. Cognitive issues in fingerprint analysis: inter- and intra-expert consistency and the effect of a ‘target'comparison[J]. Forensic Science International, 2011, 208(1-3): 10-17.
[48]
张文娟. 审查逮捕阶段单独指纹证据应用情况的调查报告[J]. 中国刑事法杂志, 2005(5): 96-102.
(ZHANG Wenjuan. Review of the investigation report on the application of separate fingerprint evidence at the stage of arrest[J]. Criminal Science, 2005(5): 96-102.)
[49]
蒋超阳, 白先玲. 手印检验鉴定结论错误主要成因的分析研究[J]. 广西警官高等专科学校学报, 2007, 79(2): 48-50.
(JIANG Chaoyang, BAI Xianling. Analysis and research on the main causes of errors in fingerprint examination and identification[J]. Journal of Guangxi Police College, 2007, 79(2): 48-50.)
[50]
高梦婷, 孙晗, 唐云祁, 等. 基于改进YOLOv5的指纹二级特征检测方法[J/OL]. 激光与光电子学进展. [2022-04-06]. DOI:10.3788/lop60.1010006.
(GAO Mengting, SUN Han, TANG Yunqi, et al. Fingerprint second-order minutiae detection method based on improved YOLOv5[J/OL]. Laser and Optoelectronics Progress. [2022-04-06]. DOI:10.3788/lop60.1010006.)
[51]
吴春生, 李孝君, 吴浩. 基于深度学习的指纹自动识别技术[J]. 刑事技术, 2022, 47(1): 88-95.
摘要
本文从学科领域入手,对指纹自动识别技术在发展过程中受人工智能技术影响所产生的新变化进行简述。指纹识别技术作为一种计算机应用技术,其发展与计算机科学的新技术密切相关。人工智能技术,特别是基于深度学习的图像技术的发展使指纹识别算法开启了全新的模式。本文将人工智能在指纹领域的发展分成三个阶段,并对当前所处的第二阶段的发展趋势进行了分析。基于深度学习的指纹识别技术使用图像特征而不是传统细节点特征的方式,改变了法庭科学领域对指纹识别的认知。本文重点对深度学习技术在指纹识别方面的应用模式和典型的技术方法进行了论述,给出了基于深度学习的指纹识别技术方案图,对技术方案中的网络模型设计等重要步骤逐一进行了说明,提出了图像处理、降维等几个需要重点攻坚的技术环节。对现有的可为指纹识别借鉴使用的深度网络模型进行了介绍,如:卷积神经网络、自编码器网络。最后对人工智能指纹识别算法与传统算法的性能进行了对比。
(WU Chunsheng, LI Xiaojun, WU Hao. Introduction to automatic fingerprint identification based on deep learning[J]. Forensic Science and Technology, 2022, 47(1): 88-95.)
An introduction was here put forward about automatic fingerprint identification relating to deep learning. Starting from the brief review on automatic fingerprint identification technology (i.e., the automated fingerprint identification system, AFIS) and developing process, the computer-based innovations were further elucidated to focus on artificial intelligence (AI) technology and its application in recognition of images. Fingerprint identification is definitely a kind of image discrimination, hence having it brought into a new way of AI technology tackling. With the recognition algorithm about fingerprint pattern, AI is playing its role in fingerprint identification through improving image technology based on deep learning. AI&rsquo;s fingerprint identification can be divided into three stages, leaving the second stage being here specifically described about the relevant developing trend. Forensic fingerprint recognition has since been changed with deep learning adopting image features other than traditional minutiae distinctions. The emphasis of this essay was put on the deep learning technology about its application mode and typical technology method in fingerprint identification, with the demonstrative technical scheme being illustrated. For the involving network model design in the technical scheme mentioned above, those important steps were explained one by one. Several key technical problems were also proposed about image processing, dimension reduction and the others related. The present available deep learning network models, eligible for fingerprint identification, were introduced with the examples of convolutional neural network and the auto-encoder one, too. Finally, the comparison was carried out on performance of AI&rsquo;s fingerprint identification algorithm against the traditional one.
[52]
马荣梁. 指纹显现技术的现状与发展趋势(英文)[J]. 刑事技术, 2016, 41(4): 302-308.
摘要
本文旨在总结指纹技术的新发展,并从以下10个方面分析指纹技术未来发展的可能方向。1. 更灵敏的显现试剂。以荧光试剂和纳米粒子为代表的两种技术最为重要和突出。纳米粒子较常规粉末吸附性好,而荧光试剂具有高灵敏度且能克服背景干扰的优点,二者结合表现更加显著,有关研究表明其前景广阔。2. 疑难客体上的指纹显现技术。指皮肤、胶带粘面、塑料纸币及背景发荧光的材质等表面上的指纹显现。3. 时间分辨和相分辨技术。它们都涉及到一系列复杂仪器的使用,另外与传统荧光使用不同,时间分辨技术是根据指纹试剂及背景的荧光寿命或者相位的不同,通过复杂仪器分辨出该微小差异并加以放大,从而将指纹显现出来。此方法能显现传统荧光法处理不了的指纹。4. 光谱成像技术。包括红外、紫外及可见光、拉曼成像等。光谱成像技术特别是红外光谱成像技术在显现指纹的同时,能够分辨出指纹物质的成分,比如手上粘附的一些外源性物质像毒品、爆炸残留物等。因而,光谱成像技术可能是迄今为止最为有效的能解决一些疑难指纹显现的技术,但光谱成像一般需要大型昂贵的仪器设备。5. 生化核危害性物质污染的检材上的手印显现。甲醛处理生化类污染的指纹检材有报道,但核污染材料本文未涉及。6. 免疫学和适配体技术。使用抗原抗体的免疫学反应来显现指纹也是人们探索的重要方向之一。免疫学和适配体技术都具有高灵敏度和选择性强的优点,但反应条件较为苛刻。7. 指纹来源的情报信息获取。从指纹中探测毒品、爆炸残留物等信息属于指纹信息学的范畴。此外,指纹自动识别系统的指纹信息也是侦查破案所需的重要情报信息。8. 指纹鉴定及三级特征的应用。现有指纹鉴定是以二级特征数量为标准的,但在实际案件中,常有二级特征不足的情形,汗孔及指纹纹线微小形状等三级特征可作为重要辅助特征而帮助鉴定。9. 指纹遗留时间的判断。该技术和方法具有重大意义,但也一直存有难点。有报道通过测定指纹遗留物质中棕榈酸的扩散速度,初步确定出其与指纹遗留时间的相关性。但影响判断指纹遗留时间的因素太多,建立通用的指纹遗留时间判断模型仍需艰苦的工作。10. 计算机指纹自动识别技术(AFIS)。AFIS在中国发展很不均衡。国家层面没有统一的AFIS,而是由各省分别建立,这导致了指纹工作总体效率较低。为此,公安部建立了指纹协查平台,出台了系统认证等办法,部分解决了既有难题。指纹大库建设现正在准备和论证中。
(MA Rongliang. Fingerprint techniques: the current and trend[J]. Forensic Science and Technology, 2016, 41(4): 302-308.)
This article tries to summarize the recent advances of fingerprint technology and demonstrates ten possible developing directions in the future: 1. more sensitive reagents; 2. fingerprit detection on surfaces difficult to handle; 3. time-resolve (TR) and phase-resolve (PR) technology; 4. chemical imaging technology; 5. fingerprit detection on the exhibits polluted by bio-, chem- and/or nuclear-hazardousness materials; 6. immune and aptamer technology; 7. forensic intelligence from fingerprit detection; 8. the use of 3rd level characteristics in fingerprint identification; 9. age estimation for fingerprits; 10. more powerful Automatic Fingerprint Identification System (AFIS).

1530

Accesses

0

Citation

Detail

Sections
Recommended

/