Fingerprint Techniques: the Current and Trend

MA Rongliang

Forensic Science and Technology ›› 2016, Vol. 41 ›› Issue (4) : 302-308. DOI: 10.16467/j.1008-3650.2016.04.012
Reviews

Fingerprint Techniques: the Current and Trend

  • MA Rongliang
Author information +
History +

Abstract

This article tries to summarize the recent advances of fingerprint technology and demonstrates ten possible developing directions in the future: 1. more sensitive reagents; 2. fingerprit detection on surfaces difficult to handle; 3. time-resolve (TR) and phase-resolve (PR) technology; 4. chemical imaging technology; 5. fingerprit detection on the exhibits polluted by bio-, chem- and/or nuclear-hazardousness materials; 6. immune and aptamer technology; 7. forensic intelligence from fingerprit detection; 8. the use of 3rd level characteristics in fingerprint identification; 9. age estimation for fingerprits; 10. more powerful Automatic Fingerprint Identification System (AFIS).

Key words

fingerprint / fingerprit detection / time-resolve (TR) and phase-resolve (PR) technology / bio- / chem- / nuclear-hazardousness materials / forensic intelligence / 3rd level characteristics / age estimation / Automatic Fingerprint Identification System (AFIS)

Cite this article

Download Citations
MA Rongliang. Fingerprint Techniques: the Current and Trend. Forensic Science and Technology. 2016, 41(4): 302-308 https://doi.org/10.16467/j.1008-3650.2016.04.012

References

[1] C. Champod, C. Lennard, P. Margot, et al. Fingerprints and other ridge skin impressions. Boca Raton: CRC Press, 2004.
[2] 赵向欣.中华指纹学 (第1版). 北京: 群众出版社, 1997.
[3] E.R. Menzel, S.M. Savoy, S.J. Ulvick, et al. Photoluminescentsemiconductor nanocrystals for fingerprint detection. J. Forensic Sciences, 2000, 45(3): 545-551.
[4] E.R. Menzel, M. Takatsu, R.H. Murdock, et al. Photoluminescent CdS/Dendrimer nanocomposites for fingerprint detection. J. Forensic Sciences, 2000, 45(4): 770-773.
[5] K.K. Bouldin, E.R. Menzel, M. Takatsu, et al. Diimide-enhanced fingerprint detection with photoluminescent CdS/Dendrimer nanocomposites. J. Forensic Sciences, 2000, 45(6): 1239-1242.
[6] Y.-J. Jin, Y.-J.Luo, G.-P. Li, et al. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Science International, 2008, 179(1): 34-38.
[7] M. Wood, P. Maynard, X. Spindler. Visualization of latent fingerprits using an aptamer-based reagent. Angew. Chem. (Int. Ed.), 2012, 51: 12272-12274.
[8] N. Jones, M. Kelly, M. Stoilovic, et al. The development of latent fingerprints on polymer banknotes. J. Forensic Identification, 2003, 53(1): 50-77.
[9] 马荣梁, 常柏年. 胶带粘面上的手印显现. 刑事技术, 2000, 3: 25-27.
[10] 马荣梁,常柏年. 如何提取及剥离胶带粘面上的手印. 刑事技术, 2000, 5: 33-34.
[11] R. MA. Novel fingerprit detection techniques using upconverters with anti-stokes luminescence. In: Centre for Forensic Science, University of Technology Sydney: Sydney, 2012.
[12] R. Ma, E. Bullock, P. Maynard, et al. Fingerprit detection on non-porous and semi-porous surfaces using NaYF4:Er,Yb up-converter particles. Forensic Science International, 2011, 207(1-3): 145-149.
[13] R. Ma, R. Shimmon, A. McDonagh, et al. Fingerprit detection on non-porous and semi-porous surfaces using YVO4:Er,Yb luminescent upconverting particles. Forensic Science International, 2012, 217: e23-e26.
[14] U.S. Dinish, Z.X. Chao, L.K. Seah, et al. Nanosecond resolution in fingerprint imaging using optical technique. International Journal of Nanoscience, 2005, 4(4): 695-700.
[15] L.K. Seah, P. Wanga, V.M. Murukeshana, et al. Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection. Forensic Science International, 2006, 160(2-3): 109-114.
[16] R.H. Murdock, E.R. Menzel. A computer interfaced time-resolved luminescence imaging system. J. Forensic Sci., 1993, 38: 521-529.
[17] U.S. Dinish, Z.X. Chao, L.K. Seah, et al. Formulation and implementation of a phase-resolved fluorescence technique for latent-fingerprint imaging: theoretical and experimental analysis. Applied Optics, 2005, 44(3): 297-304.
[18] U.S. Dinish, L.K. Seah, V.M. Murukeshan, et al. Theoretical analysis of phase-resolved fluorescence emission from fingerprint samples. Optics Communication, 2003, 223: 55-60.
[19] 王桂强.光谱成像检验技术. 刑事技术, 2004, 1: 7-12.
[20] M. Tahtouh, J. Kalman, C. Roux, et al. The detection and enhancement of latent fingerprits using infrared chemical imaging. Journal of Forensic Sciences, 2005, 50(1): 64-72.
[21] M. Tahtouh, J.R. Kalman, B.J. Reedy. Synthesis and characterization of four alkyl 2-cyanoacrylate monomers and their precursors for use in latent fingerprint detection. Journal of Polymer Science, Part A: Polymer Chemistry, 2011, 49: 257-277.
[22] M. Tahtouh, S.A. Scott, J.R. Kalman, et al. Four novel alkyl 2-cyanoacylate monomers and their use in latent fingerprit detection by mid-infrared spectral imaging. Forensic Sci Int, 2011, 207: 223-238.
[23] R. Hoile, S. Walsh, C. Roux. Bioterrorism: Processing contaminated evidence, the effects of formaldehyde gas on the recovery of latent fingerprits. J. Forensic Sci., 2007, 52(5): 1097-1102.
[24] X. Spindler, O. Hofstetter, A.M. McDonagh, et al. Enhancement of latent fingerprits on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem. Commun., 2011, 47: 5602-5604.
[25] M. Wood, P. Maynard, X. Spindler. Selective targeting of fingerprits using immunogenic techniques. Australian J. Forensic Sci., 2013, 45: 211-226.
[26] A. Boddis, D. Russell. Simultaneous development and detection of drug metabolites in latent fingerprits using antibody-magnetic particle conjugates. Analytical Methods, 2011, 3(3): 519-523.
[27] R. Leggett, E. Lee-Smith, S. Jickells, et al. “Intelligent” fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles.Angew. Chem. (Int. Ed.), 2007, 46: 4100-4103.
[28] M. Shin, S. Edward. Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry. Analytical Chemistry, 2015, 87(16): 8035-8038.

600

Accesses

0

Citation

Detail

Sections
Recommended

/