骨骼组织法医毒物分析研究进展
舒翠霞1, 华炜婕1, 董颖2, 赵璟悠1, 龚丹1, 赵嘉祥1
1.苏州市公安局物证鉴定所,江苏 苏州 215131
2.公安部物证鉴定中心,北京 100038

第一作者简介:舒翠霞,女,安徽宣城人,硕士,工程师,研究方向为理化检验。E-mail: shucuixia7@163.com

摘要

在涉及白骨化、分尸以及尸体高度腐败的案件中,传统的生物检材脏器组织、血液以及其余常规生物样品无法得到,只能提取骨骼组织进行毒物检验,从而获得有价值的信息,但是骨骼组织是一个特殊组织,毒物检验难度大、可利用度低。近年来随着高度灵敏的分析仪器问世,骨骼组织越来越引起毒物检验专家们的兴趣。本文综述了骨骼组织的特点、检测的药毒物、检测样本前处理方法、分析检测方法以及动物实验等有关骨骼组织的研究进展,旨在为有关骨骼组织中毒物的顺利检验及相关研究提供科学参考。

关键词: 法医毒物学; 骨骼组织; 检测技术; 动物实验
中图分类号:DF795.1 文献标志码:A 文章编号:1008-3650(2021)04-0389-05
Research Progress of Forensic Toxicological Analysis into Skeletal Tissue
SHU Cuixia1, HUA Weijie1, DONG Ying2, ZHAO Jingyou1, GONG Dan1, ZHAO Jiaxiang1
1. Criminal Investigation Detachment of Suzhou Public Security Bureau, Suzhou 215131, Jiangsu, China
2. Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
Abstract

At times, cases are suspicious of relating to death from poisoning, yet the traditional toxicological testing is difficult to carry out due to the corpses having decayed into skeletonized remains, fragmented and/or decomposed thoroughly, resulting in unavailability to extract the poisoning chemicals. Accordingly, skeletal tissue is then the only left material for the poisoning substances to extract with such cases although it is not a current welcome sample about doing so. However, skeletal tissue is advantageous in preventing against contamination and decomposition, leaving the potential for toxicological analysis to have the depositing-into-bone toxicants refined with novel and ingenious innovations so that the cold and difficult-to-solve cases could be settled someday. Definitely, the recent publications truly present such endeavors about making the road put through. This paper reviews the comprehensive actuality about toxicological analysis into skeletal tissue. Firstly, the suitable skeletal tissues were commented from the relevant publications, together with their applicable methods including the pretreatment (e.g., cleaning, drying, crushing and extraction) and instrumental utilization. Secondly, the animal experiments were summarized about the drug distribution and metabolic changes in skeletal tissue under different environmental conditions. Thirdly, targeting to the discrepant drug concentrations between marrow and mineralized bone, the adequate treatments were discussed for separating marrow from mineralized bone so as to independently assess the value of a particular skeletal tissue type in detection of a given drug. Finally, suggestions and prospect were put forward about both the problems waiting for solution and progressive trend, having emphasized the mechanism of drug incorporation into skeletal tissue, which drugs can be detected in skeletal tissue, which type of or certain bone is suitable for toxicological analysis, and the others related.

Key words: forensic toxicology; skeletal tissue; testing technology; animal experiment

在日常法医毒物检测中, 血、尿、胃等是常见分析检测对象, 但涉及白骨化、分尸以及尸体高度腐败的案件中, 传统的可用于毒物分析的生物检材可能非常有限且没有别的检材可供选择, 此时骨骼组织可能是毒物研究的重要检材来源。多数骨骼组织是一种脉管组织, 其内的骨髓血管化且富含多种脂类, 能够让一些可溶性的药物有效分布, 所以骨骼组织作为一种分析基质能扩展分析范围, 并且骨骼组织与其余生物样品相比, 可抵御外部因素的影响以及真菌和细菌的破坏, 具有不会腐败、难以污染等优点。

1 骨骼组织的特点

人体骨骼从形态上可分为长骨、短骨、扁骨和不规则骨, 长骨内有空腔, 容纳骨髓, 两端膨大; 骨骼有两种组织类型, 即骨密质和骨松质, 骨松质呈海绵状, 由相互交织的骨小梁排列而成, 这两种形态的组织都存在于许多骨骼中。

骨骼是一种坚硬的组织, 外源性药物通过Haver、Volkmann通道进入骨骼, Haver、Volkmann通道是骨组织的血管化场所, 在这些通道中, 骨组织的水化层和血液之间的离子交换将形成局部平衡, 药物通过取代或螯合在晶体骨结构中矿化[1], 因此骨组织中药物浓度依赖于血液中药物浓度。在生理pH值(7.4)和体温下电离的药物在骨组织的水化层中产生更高的浓度, 骨组织中容易检出, 而pKa值低于生理pH值的药物在人体内难以电离, 药物难以进入骨组织的水化层, 因而难以整合到骨质中[2]。某些半衰期短或化学性质不稳定的药物, 例如:O6-单乙酰吗啡、奥氮平, 在骨骼中可能不会存在; 除此之外, 极性代谢物以及高蛋白结合的化合物从血液中转移到骨骼的量较少, 因此也难以检测。

2 骨骼组织在法医毒物分析中的应用
2.1 研究的药毒物种类

当前报道中, 从尸检提取的骨骼组织或死亡数年后在室外发现的骨骼残骸中检测到的药物种类较多, 包括抗惊厥药、抗抑郁药、抗组胺药、抗精神病药、解热药、巴比妥酸盐、苯二氮卓类药物、中枢神经系统兴奋剂、雌激素调节剂、阿片类药物、合成阿片类药物、金属毒物及其他镇静催眠药等[3, 4, 5, 6, 7, 8], 近年来有从骨骼组织中检测化学武器神经毒剂[9]以及骨髓中检测乙基葡萄糖醛酸[10]的报道。

2.2 研究的用途

骨骼组织中药物含量低, 与血液中药物浓度关联性差, 不能直接作为死因证据, 但从骨骼中检出的药物, 可提供个体生活史等相关信息, 有助于个体识别, 且对确认嫌疑人的陈述等具有非常重大的意义。例如在没确认尸源的骨骼组织中检测到甲基苯丙胺, 可以考虑死者有吸毒史, 在查找尸源时可以从吸毒人员开始排查, 从而缩小排查范围。有案例报道[11], 两男子失踪4年后, 在森林中发现被埋葬的尸骨, 并从骨骼组织中检测出三唑仑, 证实了该案件嫌疑人陈述的先用三唑仑将受害者镇静催眠后再活埋的犯罪事实。对于尸体已经火化的案件, 骨灰是唯一的检材, 金属毒物易于沉积在骨骼组织中, 且火化后骨灰中金属毒物损失较少, 从骨灰中检出金属毒物, 能反映人体中毒情况, 具有非常实用的价值[3]

3 骨骼样本的分析方法
3.1 骨骼样本的选择

由于骨髓中药物含量高, 因此在实际案件分析中, 首先应根据骨髓数量的多少、获取的难易程度或可获得性来确定检测的骨种类, 可以首选含骨髓数量较多的肱骨或股骨; 除此之外, 锁骨也是很好的选择, 因为锁骨相对其余骨骼富含更多的脂类, 且在法医解剖时容易取得、不会破坏尸体的完整性。

3.2 骨骼样本的处理

骨骼样本的前处理一般包括去除骨头上覆盖的软组织、清洗、干燥、切片或粉碎。多数文献关于去除表面组织没有详细说明, 也有文献报道用手术刀手动去除软组织[7, 8, 12], 用去离子水[7, 8]、碱性缓冲液和溶剂清洗[13, 14, 15, 16, 17]或者在碱性缓冲液中声波降解[13, 18, 19]以及在沸水中煮沸30 min[20]等。Santos等[21]采用碱性蛋白酶分解骨头上的软组织, 这是一种新的样品前处理方法。这种酶的主要活性成分是枯草杆菌蛋白酶A, 该酶在pH7~11的条件下, 能够完全去除骨表面的软组织和结缔组织, 使用酶降解法清洗骨头的优点是能够保全骨髓不被破坏、缩短清洗时间, 并且使用该方法无任何特殊气味。Rubin[1]认为在萃取前对骨组织进行清洗或超声可能会导致分析物的损失, 特别是将骨组织暴露在富含磷酸盐的溶液中清洗或超声可能会加剧损失, 因为富含磷酸盐的溶液会取代骨骼组织中被吸附的药物或代谢物, 从而降低骨骼组织中的药物浓度。

将清洗干净的骨头置于室温环境[7, 8]或惰性气流下[13, 22, 23]晾干, 再将骨头切薄片[8, 12]或磨成粉末[13, 20, 22, 23], 由于骨粉末可以增大基质与萃取溶剂接触表面积, 因而骨粉末较骨薄片萃取回收率高。对处理好的骨薄片或骨粉末的萃取方法主要包括甲醇被动提取[7, 13, 20, 22]、索氏提取法[9]或酸性消化反应[20], 这些反应通常需要12~72 h孵化期, 耗时长, 但微波辅助提取(microwave-assisted extraction, MAE)可有效缩短分析时间, Watterson的研究小组采用MAE萃取骨组织中哌替啶, 总萃取时间15 min, 他们还发现MAE比被动提取回收率高[13]。Desrosiers等[23]采用MAE提取骨组织中氯胺酮、地西泮、戊巴比妥药物萃取时间只要5 min。MAE法需考虑待测物本身的性质、萃取溶剂性质以及被分析样品的总量, 一般极性物质比非极性物质更能有效吸收微波能量。

3.3 骨骼样本的检测方法

建立高效、灵敏的检测方法, 对骨组织中药物进行快速定性定量检测, 是实现骨骼组织中药物分析的重要环节。现有文献报道中, 有酶联免疫吸附法(ELISA)[19, 22, 24, 25]、气相色谱及联用技术[11, 17, 26, 27, 28, 29]、液相色谱及联用技术[30, 31]等。ELISA分析法灵敏度高, 适合痕量分析, 可平行分析多个样品, 用于骨组织中药物分析的阳性初筛; 该方法的主要局限性是可能受到来自于样品基质内的药物代谢物或化合物等交叉反应物质的干扰。气相色谱及联用技术是一种成熟的分离分析技术, 也是实验室最常用的分析手段之一。Raikos等[5]采用气相色谱-火焰离子化(GC-FID)检测海洛因成瘾中毒死者的骨髓、骨骼以及埋葬一年后骨骼中的吗啡含量, 分别检出药物浓度为190、340和155 ng/g。Lopez等[26]采用GC-MS在SIM模式下, 对骨骼中4种阿片类药物、可卡因及其代谢物进行检测分析, 6种药物浓度在0.3~1 ng/mg(低浓度)至150 ng/mg(高浓度)范围内, 平均绝对回收率为66%~110%, 检出限和定量下限分别为0.1~0.3 ng/mg、0.3~1 ng/mg。Cartiser等[28]采用GC-MS/MS检测骨髓中咖啡因, 在125 、1400 ng/g的低、高浓度的回收率分别为56.8%、56.3%, 定量下限为50 ng/g。液相色谱及液相色谱联用技术具有分析速度快、结果重现性好、灵敏度高、样品处理简单等多项优势, 是分析领域定性定量检测最常用的技术手段之一。Srikanth等[30]采用反相高效液相色谱法分析大鼠骨髓组织中氯法齐明, 在15.6~2 000.0 ng/mL浓度范围内线性关系良好, R2大于0.99, 低、中、高三浓度的回收率分别为:79.4%、80.2%、83.2%。Orfanidis等[31]近年利用UHPLC-MS/MS分析骨头中可卡因、大麻、安非他命等27种药物, 采用水-甲醇为流动相, 梯度洗脱, 27种目标物在该程序下能有效分离, 定量下限在0.11~4.15 ng/g之间, 检出限在0.03~1.35 ng/g之间。需要注意的是, 由于骨骼组织中药物提取复杂, 且没有标准化的样品制备方法, 加之无法确定固体基质中药物的萃取回收率和基质的异质性, 因此骨骼组织中药物浓度采用半定量的测量方法, 在不同实验室中, 这种浓度测量的效用是有限的。

4 动物实验研究

当今国内外对骨骼组织中的药毒物检验研究不足, 还需要大量动物实验来进行完善, 主要是有关药物在体内的分布、死后环境因素对药物浓度的影响及骨骼组织中药物浓度与血液中药浓度的相关性研究等。

药物在骨骼组织的分布中, 骨髓中药物浓度最高, 骨小梁与皮质骨相比, 骨小梁产生更高的药物浓度。例如Vandenbosch[32]研究大鼠骨组织中美沙酮的分布时发现, 当大鼠血液中美沙酮浓度为2.99 ng/mL时, 骨髓中药物浓度为166.94 ng/g, 明显高于其余骨骼组织; 富含骨小梁的股骨头近端、远端及臀肌粗隆中药物浓度分别为19.18、12.10、18.09ng/g, 而富含皮质骨的骨干中药物浓度为10.29 ng/g。

多种因素可以影响药物在骨骼组织中的沉淀:药物的理化性质、持续暴露或阳光照射等, 有研究报道在埋葬或完全暴露户外腐败后兔子和小鼠骨骼组织中阿片类药物含量会大量减少[20, 33]而甲基苯丙胺浓度在各种外界条件下并没有明显变化趋势[34]。Cornthwaite[25]研究不同微气候条件和体位对大鼠骨骼组织中氯胺酮及其代谢物的影响, 发现动物尸体如果在树木繁茂的阴凉环境下分解, 骨骼中药物浓度低, 而暴露于阳光照射下分解则骨骼中药物浓度高, 这主要是由于置于阳光照射下的尸体大部分是木乃伊化的, 很少有昆虫活动来驱动分解, 分解液从体内排出少; 阴凉环境中被遮蔽的尸体有更大程度的蛆活性, 随后分解速度也更快, 并且蛆可以吸收和代谢药物, 在蛆虫体内检测到的药物浓度也可反映注入该基质的总剂量; 该研究同时发现仰卧、俯卧和直立的不同体位下分解尸体的骨中药物浓度也存在显著差异。

目前通过动物实验发现, 多种药物在血液中的药物浓度与骨髓中药物浓度呈线性关系[5], 而与骨质中药物浓度关联性较差[7], 但已有研究发现[2], 大鼠骨质中药物/代谢物比例与血液中的药物/代谢物比例高度一致, 药物/代谢物比例可能比骨骼组织中药物绝对浓度更有意义, 这有助于澄清死亡方式, 区分急性药物过量和慢性药物使用。

5 展望

近年来随着科技的发展, 高灵敏度仪器的问世, 骨骼组织中药物检出率大大提高, 为案件侦破提供更多线索。但骨骼组织中的药物分析研究仍有许多不足, 例如药物在骨骼内的分布规律, 包括空间分布和时间分布; 由于骨骼中药物浓度不能真实反映死亡时血液中的药物浓度, 当前从骨骼中检出的阳性药物不能作为死因证据。因此需要通过继续开展动物实验, 控制相关因素, 确定哪一类骨或精确到哪一块骨骼比其余骨骼更适合毒物分析; 继续研究骨骼中药物浓度与血液中药物浓度的关联性, 科学评价骨骼中药物浓度, 并且制定有关骨样品处理分析的标准化程序。

参考文献
[1] RUBIN K M. The current state and future directions of skele-tal toxicology: forensic and humanitarian implications of a proposed model for the in vivo incorporation of drugs into the human skeleton[J]. Forensic Science International, 2018, 289: 419-428. [本文引用:2]
[2] VANDENBOSCH M, SOMERS T, CUYPERS E. Distribution of clomipramine, citalopram, midazolam, and metabolites in skeletal tissue after chronic dosing in rats[J]. Drug Testing and Analysis, 2019, 11: 1083-1093. [本文引用:2]
[3] 吴玉红, 张鹏, 王丹. 微波消解ICP/AES标准加入法测定骨中金属毒物[J]. 中国刑警学院学报, 2012, 4(36): 54-56.
(WU Yuhong, ZHANG Peng, WANG Dan. Determination of metal toxicants in bone by ICP/AES stand ard addition method with microwave digestion[J]. Journal of Criminal Investigation Police University of China, 2012, 4(36): 54-56. ) [本文引用:2]
[4] MCLNTYRE I M, KING C V, BORATTO M, et al. Postmortem drug analyses in bone and bone marrow[J]. Therapeutic Drug Monitoring, 2000, 22: 79-83. [本文引用:1]
[5] RAIKOS N, TSOUKALI H, NJAU S N. Determination of opia-tes in postmortem bone and bone marrow[J]. Forensic Science International, 2001, 123: 140-141. [本文引用:3]
[6] BENKO A. Toxicological analysis of amobarbital and glutethi-mide from bone tissue[J]. Forensic Science International, 1985, 30(3): 708-714. [本文引用:1]
[7] MCGRATH K K, JENKINS A J. Detection of drugs of forensic importance in postmortem bone[J]. The American Journal of Forensic Medicine and Pathology, 2009, 30: 40-44. [本文引用:6]
[8] IOANNA V, SOTIRIS A, CONSTANTINOS P, et al. The clavicle bone as an alternative matrix in forensic toxicological analysis[J]. Journal of Forensic and Legal Medicine, 2014, 22: 7-9. [本文引用:5]
[9] RUBIN K M, GOLDBERGER B A, GARRET T J. Detection of chemical weapon nerve agents in bone by liquid chromatography-mass spectrometry[J]. Journal of Analytical Toxicology, 2020, 444(4): 1-11. [本文引用:2]
[10] ISKIERKA M, ZAWADZKI M, SZPOT P, et al. Comparison of postmortem ethanol level in blood and bone marrow[J]. Journal of Forensic and Legal Medicine, 2019, 61: 65-68. [本文引用:1]
[11] KUDO K, SUGIE H, SYOUI N, et al. Detection of triazolam in skeletal remains buried for 4 years[J]. International Journal of Legal Medicine, 1997, 110: 281-283. [本文引用:2]
[12] WATTERSON J H, DESROSIERS N A, BETIT C C. Relative distribution of drugs in decomposed skeletal tissue[J]. Journal of Analytical Toxicology, 2010, 34: 510-515. [本文引用:2]
[13] WATTERSON J H, DESROSIERS N A. Examination of the effect of dose-death interval on detection of meperidine exposure in decomposed skeletal tissues using microwave-assisted extraction[J]. Forensic Science International, 2011, 207: 40-45. [本文引用:6]
[14] WATTERSON J H, DONOHUE J P. Relative distribution of ketamine and norketamine in skeletal tissues following various periods of decomposition[J]. Journal of Analytical Toxicology, 2011, 35: 452-455. [本文引用:1]
[15] WATTERSON J H, DONOHUE J P, BETIT C C. Comparison of relative distribution of ketamine and norketamine in decomposed skeletal tissues following single and repeated exposures[J]. Journal of Analytical Toxicology, 2012, 36: 429-433. [本文引用:1]
[16] WATTERSON J H, CORNTHWAITE H M. Discrimination between patterns of drug exposure by toxicological analysis of decomposed skeletal tissues. Part II: amitriptyline and citalopram[J]. Journal of Analytical Toxicology, 2013, 37: 565-572. [本文引用:1]
[17] WIEBE T R, WATTERSON J H. Analysis of tramadol and O-desmethyltramadol in decomposed skeletal tissues following acute and repeated tramadol exposure by gas chromatography-mass spectrometry[J]. Forensic Science International, 2014, 242: 261-265. [本文引用:2]
[18] LAFRENIERE N M, WATTERSON J H. Detection of acute fentanyl exposure in fresh and decomposed skeletal tissues. part II: the effect of dose-death interval[J]. Forensic Science International, 2010, 194(1): 60-66. [本文引用:1]
[19] WATTERSON J H, VANDENBOER T C. Effects of tissue type and the dose-death interval on the detection of acute ketamine exposure in bone and marrow with solid-phase extraction and ELISA with liquid chromatography tand em mass spectrometry confirmation[J]. Journal of Analytical Toxicology, 2008, 32: 631-638. [本文引用:2]
[20] GUILLOT P, MAZANCOURT M, DURIGON M, et al. Morphine and 6-acetyl morphine concentrations in blood, brain, spinal cord, bone marrow and bone after lethal acute or chronic diacetylmorphine administration to mice[J]. Forensic Science International, 2007, 166: 139-144. [本文引用:5]
[21] SANTOS ES, SPINELLI E, Francisco R, et al. Using porcine bone marrow to analyze fenproporex and its metabolite amphetamine for forensic toxicological purposes: method develop-ment and validation[J]. Analytical Methods, 2017, 9: 4060-4069. [本文引用:1]
[22] VANDENBOER T C, GRUMMETT S A, WATTERSON J H. Utility of immunoassay in drug screening in skeletal tissues: sampling considerations in detection of ketamine exposure in femoral bone and bone marrow following acute administration using ELISA[J]. Journal of Forensic Sciences 2008, 53: 1474-1482. [本文引用:4]
[23] DESROSIERS N A, BETIT C C, WATTERSON J H. Microwave assisted extraction in toxicological screening of skeletal tissues[J]. Forensic Science International, 2009, 188: 23-30. [本文引用:3]
[24] WATTERSON J H, BOTMAN J E. Effects of tissue type and the dose-death interval on the detection of acute diazepam exposure in bone and marrow with solidphase extraction, ELISA and liquid chromatography tand em mass spectrometry[J]. Journal of Forensic Sciences, 2009, 54: 708-714. [本文引用:1]
[25] LAFRENIERE N M, WATTERSON J H. Detection of acute fentanyl exposure in fresh and decomposed skeletal tissues[J]. Forensic Science International, 2009, 185: 100-106. [本文引用:2]
[26] LOPEZ L F, MALDONADOA AL, FALCONA M, et al. Development and validation of a gas chromatography-mass spectrometry method for opiates and cocaine in human bone[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164: 636-641. [本文引用:2]
[27] KOJIMA T, OKAMOTO I, MIYAZAKI T, et al. Detection of methamphetamine and amphetamine in a skeletonized body buried for 5 years[J]. Forensic Science International, 1986, 31: 93-102. [本文引用:1]
[28] CARTISER N, BEVALOT F, CHATENAY C, et al. Postmortem measurement of caffeine in bone marrow: influence of sample location and correlation with blood concentration[J]. Forensic Science International, 2011, 210: 149-153. [本文引用:2]
[29] CORNTHWAITE H M, WATTERSON J H. The influence of body position and microclimate on ketamine and metabolite distribution in decomposed skeletal remain[J]. Journal of Analytical Toxicology, 2014, 38(8): 548-554. [本文引用:1]
[30] SRIKANTH C H, JOSHI P, BIKKASANI A K, et al. Bone distribution study of anti-leprotic drug clofazimine in rat bone marrow cells by a sensitive reverse phase liquid chromatography method[J]. Journal of Chromatography B, 2014, 960: 82-86. [本文引用:2]
[31] ORFANIDISA A, GIKAA H, MASTROGIANNIB O, et al. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC-MS/MS[J]. Forensic Science International, 2018, 290: 137-145. [本文引用:]
[32] VANDENBOSCH M, SOMERS T, CUTPERS E. Distribution of methadone and metabolites in skeletal tissue[J]. Journal of Analytical Toxicology, 2018, 42: 400-408. [本文引用:]
[33] CENGNIZ S, UIUKAN O, ATES I, et al. Determination of morphine in postmortem rabbit bone marrow and comparison with blood morphine concentrations[J]. Forensic Science International, 2006, 156(2-3): 91-94. [本文引用:1]
[34] NAGATA T, KIMURA K, HARA K, et al. Methamphetamine and amphetamine concentrations in postmortem rabbit tissues[J]. Forensic Science International, 1990, 48(1): 39-47. [本文引用:1]