核磁共振技术在污水等环境样品分析中的应用
李彭, 高利生
公安部物证鉴定中心,北京 100038

第一作者简介:李彭(1986—),男,山东泰安人,硕士,助理研究员,研究方向为毒品检验。E-mail:lipeng77727@163.com

摘要

随着城市化的加剧和化肥、农药使用量的增加,作为生命之源的水已经受到了严重的污染。水污染降低了水体的使用功能,加剧了水资源短缺,水污染严重破坏生态环境、影响人类生存,因此,对污水等的有害成分分析很有必要。核磁共振技术可以在简单预处理或不做任何预处理的状态下获得不同物理状态分析物的分子层次的信息,这非常适合环境研究。本文概述了污水处理的简要流程,核磁共振技术的应用现状,重点论述了核磁共振技术在污水成分检测分析中的理论依据和应用原理,并以实例说明了应用核磁共振技术检测各类污水成分的效果。最后展望了核磁共振技术将来的发展方向,并建议加强应用技术的理论向实践推广和加快新仪器的研发工作,为改善环境质量、降低检测成本提供新的技术手段。

关键词: 核磁共振; 环境样品; 污水
中图分类号:DF794.3 文献标志码:A 文章编号:1008-3650(2019)01-0066-08
Nuclear Magnetic Resonance for Sewage Analysis
LI Peng, GAO Lisheng
Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
Abstract

Water pollution is increasingly becoming a serious problem with the development of industry, the augment of population, the over-rapid urbanization and the uncontrolled application of chemical fertilizers and pesticides. Water pollution is usually caused by various pollutant substances discharged into the water. Commonly, there are four kinds of pollution sources. First, the waste water and liquid from industrial production, ordinarily containing raw/finished materials unavailable, intermediate products, by-products and pollutants engendered. Second, the drainage collected by the sewer pipes, mostly coming from various domestic sewage and industrial effluents. Third, the polluting liquid substances out from agricultural activities. Fourth, the solid and semi-solid waste materials from people’s lives and industrial process. Water pollution is malign as it has already reduced the utilization of water, exacerbated the shortage of water resources, seriously damaged the ecological environment and affected human health. Therefore, it is necessary to analyze the harmful components in polluted water/sewage. Nuclear magnetic resonance (NMR) boasts of simple sample preparation, small destructivity to the analytes and complete component resolution so that it has got a great attention and been widely applied by most researchers among physics, chemistry, biology, medicine, food and other sciences. NMR can obtain information at the molecular level of different physical states with simple or even without sample pretreatment, thus excelling in environmental research. This paper emphasizes on the theoretical basis and application principle of NMR technique for analyzing the components in polluted water/sewage, illustrates the effect of NMR on detecting various components from sewage, together with the brief introduction to the sewage disposal process and NMR application status. Finally, a prospect was made on the progress of NMR technique, suggesting that the theory ought to be strengthened for applying NMR, the relevant new instruments should be researched and developed and more importantly popularized and accelerated into practical use.

Key words: NMR (nuclear magnetic resonance); environmental samples; sewage/polluted water

人口的快速增长和环境制约使得人类对环境资源的需求与日俱增, 推进可持续发展型经济变得尤为重要, 而且与人类活动密切相关的水资源正急剧减少, 因此要对水资源进行快速恢复以备后续再利用。早在公元前4000年初的古代文明中, 人类就发明了第一种水处理方法, 以改善水的味道和气味。公元前1500年左右, 埃及人用明矾将悬浮颗粒凝结, 并将其清除以澄清水质。在1930~1940年间, 考古人员发现了一处存在于十六世纪的巴基斯坦遗址, 当地居民将房屋的厕所与印度河的支流河道连在一起, 这被认为是人类首个排水系统而且可能具有污水处理功能。现在我们可以对家庭和工业污水进行处理以防止疾病和其他有害物的滋生、避免地下水污染、保护水生生物和水资源[1, 2, 3]。如图1所示, 城市的水循环系统是一个从污水生成到最终处理的复杂循环。然而在一些立法或执法不严的国家, 污水的最终流向仍然是个问题, 并且对环境造成有害影响[4, 5, 6]

图1 某城市典型的水循环系统Fig.1 Scheme of water cycle for urban supply

现在人们已经意识到现有自然资源无法满足经济系统发展的需要, 而且人类暂时还没有处理和消化污染物的办法, 因此人们对环境保护越来越重视。目前, 污水处理和土壤净化是保护环境和卫生最重要的举措之一[7, 8, 9, 10, 11, 12]。但是现在的污水处理技术能力还无法做到防止污染面扩大、检测污水处理厂故障、查明非法污染来源和开发新的污水处理方法等诸多问题。因此, 针对现有技术开发新的分析工具或新技术将有助于分析环境样品。

本文将总结在污水处理排入和排出研究中应用NMR和LC-NMR的几个研究成果, 并对相关文献进行综述。

1 样品采集、制备和保存

制定取样计划和样本保存是进行任何固体或液体样本研究的最重要的步骤之一。这个步骤需要并值得花费时间, 而且要在开始收集数据前做好计划, 因为采样过程中任何问题都会破坏收集的样本数据。在样本收集阶段, 要考虑到收集区内的分水岭、水道, 河流, 湖泊, 水库, 处理厂和水流系统等诸多差异, 以求所取样本可以代表整个区域。取样地点的选择要基于水、污水异质性和非点源污染等相关知识, 例如:如果目标是要取来自河流的水, 那就不宜在靠近河堤、河道和垃圾处理厂的位置取样, 除非这些点本身就是取样目标。因此所取样本必须能够充分代表区域内污水的各种特征。此外, 对于污泥和土壤的收集, 取样范围必须划分准确, 取样必须有代表性, 避免草率收集和选择不具备代表性的区域。在进行样品制备的同时也要考虑NMR设备整体的场强和灵敏度以获得高质量的谱图信息, NMR探头灵敏度可以通过测量在氘代氯仿(CDCl3)中的0.1%乙基苯溶液(浓度为14 mmol/L)的信噪比, 用以下公式计算:

Ms=(信号/噪音)/目标物分子量 (1)

质量敏感度(Ms)是探头性能的一项指标, 例如:标准的Bruker 5 mm探头的质量敏感系数为1。通常, 在500 MHz的频率下, 浓度为0.15 mg/mL便可以获得良好的核磁共振氢谱, 而在用于13C检测的实验中, 需要浓度达到3.85 mg/mL才能获得良好的碳谱[13]。目前, 低温探头通过冷却射频检测线圈和前置放大器来降低背景噪声, 因此探头的低温冷却可以产生至少4倍的灵敏度增益[14, 15]。溶液中浓度更高的分析物可以缩短实验期, 然而过高浓度可能导致溶液粘性很高, 从而使信号变宽, 因此寻找最佳浓度对于优化实验参数是至关重要的。此外, 样品必须充分溶于氘代溶剂, 并且必须不含颗粒, 因为固体的存在会破坏局部磁场的均匀性, 导致信号变宽, 因此必须将样品进行过滤, 除去全部固体颗粒才能获得最佳实验结果。

核磁共振实验需要很长时间才能完成, 因此应向含有微生物或细菌的污水样品中加入抑菌剂。叠氮化钠(0.02%w/v)是最常见的抑菌剂, 如果出现分析物和叠氮化物相互作用的情况, 还可以加入氯霉素或其他抗生素[16, 17]。另外, 使用缓冲溶液可以使系统保持长时间的稳定和离子电荷的平衡, 在各种缓冲溶液中, 氘代磷酸盐(10~50 mmol/L)是最适合核磁共振实验的[18, 19]。采取如上这些预防措施之后, 将制备的样品放入核磁管中进行谱图采集。

对于固体样品的核磁共振实验, 需要将样品塞入4 mm的小型氧化锆转子中。首先将样品拌匀并用研钵粉碎, 将转子放在特殊的漏斗形容器中, 将研磨好的粉末倒入漏斗内。在每次加入粉末后将其压实, 以确保转子被填满, 同时为核磁管留出一定空间确保可以插入盖子。如果样品量少, 不能充分填满转子时, 可以使用二氧化硅、明矾或硫酸钙等无机物将转子填满。样品均匀地填充满转子, 可以避免实验运行时损坏转子, 以至于损坏探头。此外, 多个样本参数设置对于实现良好的信噪比非常重要。例如良好的调谐, 锁定磁场频率的设定(锁场), 磁场均匀性的优化(匀场), 接收器增益调整, 脉冲长度校准以及核自旋纵向弛豫时间(T1)平均值的确定等。环境样本NMR分析测试的通常是小样本, 上述参数的优化设定就更为重要[20]

2 样品表征
2.1 表征原理

一维NMR谱图通常用于分析样品中的氢原子或碳原子, 为确定其化学结构提供重要信息。实验中观察到原子核的共振频率ν 0取决于分子环境(周围电子的性质)以及磁旋比γ 和外加磁场, 氢原子或碳原子的核磁共振谱是由邻近原子的电子电负性决定的。氢谱中另外一个重要特征是原子核与不同磁环境相互作用的方式。多维核磁共振实验的综合分析使NMR成为判定纯化合物和固体、液体、凝胶或气体混合物最直接通用的工具, 这类信息可以判断分子结构中含有何种原子或官能团, 因此很多研究文章报道了通过氢谱分析污泥、污泥提取物和污水中的官能团和目标物质[21, 22, 23, 24, 25]

环境样品的性质不尽相同, 例如土壤中固态原子的硬度较高, 导致相邻的13C原子之间出现强偶极耦合, 因此出现了宽谱峰, 可以通过样品以相对于外磁场以特定倾角(magic angle, 54.74° )作高速旋转实现[26, 27, 28], 而且由于使用交叉极化(cross-polarization, CP)机制, 一些原子核的低丰度同位素(例如13C)可以忽略不计。CP技术使用偶极-偶极相互作用来确定大量的(1H)和少量的(13C)之间的能隙, 以实现磁化转移, 从而有助于观察稀薄自旋[29]表1列举了在污水、污泥和流出物样品中发现的一些典型13C化学位移。

为了验证化合物分子量和NMR谱图信号之间的相关性是否受到连接HPLC仪器单元的影响, 可以将质谱仪单元(MS)接入系统。图2是理想状态和完全联用的LC-UV/MS-SPE自动采样存储(automatic sampling storage, ASS)-NMR系统和ASS以及低温探头在离线模式下的运行图。

表1 环境样品中一些典型物质的13C化学位移 Table 1 Typical 13C shift for chemical segments from sludge and waste water

图2 LC-UV/MS-SPE-ASS-NMR系统运行图Fig.2 Complete hyphenated LC-(UV/MS)-SPE-ASS-NMR system under off-line mode

在该系统中, 样品进入色谱柱, 经色谱分离后, 分离阀将高达98%的分离组分发送到UV检测器, 仅2%发送到MS。将目标物运至固相萃取室进行浓缩, 运行1D和2D NMR方法, 然后使用氘代溶剂将该峰从萃取室中洗脱到自动进样器, 开始NMR研究。

2.2 污泥样品的表征

污泥是含有多种微生物、抗磁性和顺磁重金属的非常复杂的固体。因此为了降低成分复杂程度并提高NMR的分辨率, 可以使用萃取、转化和超滤等几种方法。图3是来自巴西圣保罗州圣卡洛斯市的一份典型污泥, 用甲醇提取后采集到的氢谱。谱图非常复杂, 可以分为三个不同的共振区域:1)脂肪族化合物:例如烷烃氢, 酯和烯丙基残基, 范围为0.2~3.0 mg/L; 2)与氮原子或氧原子键合的1H亚甲基和3.0~6.0 mg/L的烯属氢; 3)6.0~9.0 mg/L的芳香族区域。尽管谱图十分复杂, 但是利用2D实验(例如correlatedspectroscopy, COSY和heteronuclear singular quantum correlation, HSQC), 再综合相关报道文献和已有NMR数据库, 完全有可能表征更多更复杂物质。

图3 来自巴西圣保罗州圣卡洛斯市的一份典型污泥, 用甲醇提取后采集到的氢谱Fig.3 1H NMR spectra of several characterized compounds methanol-extracted out of the sludge from Sao Carlos, Brazil

污泥中的腐殖酸和富里酸是由有机物降解产生的, 富里酸可溶于任何酸碱度的溶液, 而腐殖酸只可溶于pH值大于2的溶液。腐殖酸是由烷基/芳香族官能团组成, 这些官能团包括羧基、酮基、酚基、醇羟基和醌等[40, 41, 42, 43]。而富里酸则由大量脂类和少量的芳香族化合物组成[44, 45, 46, 47]。污泥中有机物的组成和降解研究对于有机物废料的安全回收和处置非常重要。Jouraiphy等[48]通过13C NMR谱信号, 对从活性污泥中萃取出的富里酸成分进行了研究, 并观察到在腐殖化过程中多糖含量降低, 更多芳香族化合物、脂类聚酯和醚由烷基键连接而形成了长链化合物。

Amir等[31]通过整合不同的含碳有机物和相对定量法对不同成熟度的活性污泥堆肥中腐殖酸的变化进行了研究。最终产物的烷基碳数量是初始值的两倍, 而芳香碳则略有降低。结果表明在堆肥过程中, 木质素、纤维素、半纤维素和蛋白质等复合有机物发生了明显降解, 形成了各种各样的简单有机化合物, 如碳水化合物、氨基酸、结构简单的肽和酚类。

Schmidt等[49]通过LC-SPE-NMR / MS对直链烷基苯磺酸盐(linear alkylbenzene sulfonate, LAS)这种最重要的阴离子表面活性剂进行了研究, 污水处理厂在厌氧环境下并没有降解LAS, 使其在污泥中富集[34]。Schmidt首先通过上述提到的联用方法获得了14个分离的LAS同系物和另外6个混合的LAS的1D(1H)和2D(1H-1HCOSY)谱图, 这些数据将用于LAS同系物的色谱保留时间与烷基链长度以及NMR谱图相关研究。

2.3 污水样品的表征

污水的定量分析主要根据13C NMR共振积分面积来衡量污泥中有机物的降解情况[50, 51, 52]。Lewis等[37]使用高效尺寸排阻色谱和固体核磁共振碳谱, 研究了一个亚硫酸盐纸浆和造纸厂污水处理厂中, 经过凝结处理和曝气稳定池处理的样本。结果显示在凝结过程中芳香族氢和烷基基团被选择性地除去, 而芳香族碳则在曝气稳定池处理期间被除去。

Bartoszek等[53]从污水处理厂处理污水的步骤着手研究腐殖酸, 图4总结了不同共振区的信号强度以及污水净化过程中不同采样点的变化。

图4 污水处理厂不同采样位置样品的特定共振区的信号强度变化规律Fig.4 Changing 1H and 13C NMR signal intensity of the extracted humic acid along with the different sludge-sampling sites in one sewage-disposing plant

在污水处理过程中, 腐殖酸中含氧官能团和芳环数量增加, 与脂肪族相关的信号强度降低, 表明了腐殖过程的发生。值得注意的是, 芳香族化合物中氢原子数低于芳香族化合物中碳原子的个数, 表明形成了稠合的芳环。芳香度由公式(2)计算得出, 如果芳香度增大, 则说明发生了腐殖过程, 公式中, C(aromatic carbon) 为分布在化学位移106~165 mg/L范围内的芳香族碳原子个数, C(aliphatic carbon) 为分布在化学位移0~105 mg/L范围内的脂肪族碳原子个数。

Godejohann等[54]在2011年发表了关于瑞士的两个污水处理厂在喷洒农药期间, 两种不同再生水提取物样品的研究。他们采用LC-SPE-NMR / MS联用技术, 并采用时段法记录出峰时间。实验数据能够确定含有以下农药:木兰酮、甲草胺、甜菜呋、异丙隆、苯嗪草酮、扑灭津、杀草敏和去氨基苯嗪草酮(一种苯嗪草酮的转化产物)。而且还发现了八碳、十碳、十二碳长度的脂肪酸, 甘油单酯和甘油二酯, 3-羧基甲芬那酸(药物代谢物), 塞来曲唑, 恩索利唑(一种防晒剂), 苯并三唑和N-苄基-吲哚(工业化学品)。

Scheurer等 [55]研究了污水、地表水、河堤渗水和土壤含水层处理系统中六种化合物(乙酰磺胺酸、三氯蔗糖、卡马西平、二氧化萘、1H-苯并三唑及其4-甲基同系物)含量的相关性, 以评估其作为污水标志物的可靠性, 同时还进行了土壤含水层处理系统中几种化合物持久性的研究。

Michel等[56]在2012年开发了一种用于在水相环境中对三硅氧烷表面活性剂进行痕量分析的LC-MS方法, 这类化合物可以促进液体在疏水表面的快速扩散, 加入到农药中可以提高农药活性和耐雨性。使用LC-SPE-NMR /MS测量以确定单一同系物的质量浓度。通过泊松分布对表面活性剂的低聚分布进行模拟, 并通过MS和LC-SPE-NMR / MS证实了该假设, 从而表明这两项技术适用于验证该理论。然而, LC-SPE-NMR的回收率低于预期, 可能是固相萃取室内有少量残留的缘故。

Scheurer等[57]对自来水厂在短时间臭氧处理时产生的人造甜味剂甜蜜素和安赛蜜的主要臭氧化产物进行了结构阐述。在污水和饮用水处理厂中检测到这些化合物, 用LC-亲水作用色谱(HILIC)-NMR / MS技术进行分离和检测。在该项实验中, HILIC起到了改善色谱分离效果的作用。

Preiss[58]在一处被污染的垃圾场的地下水中检测到异常的极性代谢物, 如氨基甲苯、硝基苯甲酸和三种未知的二氢或四氢取代的2-氧代-喹啉-3-基乙酸, 这种化合物的发现说明可以通过LC-MS、LC-NMR以及NMR和MS技术对单硝基甲苯转化的新路径进行研究。然而, Preiss[59]使用GC-MS、LC-MS和LC-NMR联用技术, 在德国柏林附近的城市固体废物堆填区的下坡检测出极性外源性有机物并对此进行了说明, 除了几种极性外源性有机物和染料工业的产品外, 还发现了聚乙二醇和一些杂环化合物的降解产物。

2.4 污水样品的表征在法庭科学领域的应用

违禁管制药物滥用已经成为当今日益严重的社会问题。当人类吸食违禁药物后, 由于代谢不完全, 会有部分药物母体或代谢物随粪便或者尿液排入污水中, 最终进入河流或湖泊等公共水域, 大量文献指出, 在污水、地表水甚至饮用水中已检测到此类物质的存在[60, 61, 62, 63]。环境科学界发展了污水流行病学方法, 旨在通过测定某个地区污水中违禁药物的残留浓度水平反算该地区违禁药物的用量。

Gao等[64]通过改变污水前处理的酸度环境, 冲洗、酸化及复溶过程, 确定了调整水样的pH值为2时, 无需除杂质的冲洗和氮吹过程的酸化步骤, 即可直接进入仪器分析。将该方法应用于当地十二家污水处理厂的进水口、出水口水样, 结果表明, 水样中甲基苯丙胺、吗啡、可待因等违禁药物含量较高, 达到数百ng/L量级。证明该方法可以作为实际污水样的理想测定方法。

Iria等[65]首次利用超高效临界流体色谱-核磁共振谱仪联用技术, 检测挪威特隆赫姆市三份污水中大麻素及合成大麻素类物质。该方法检测Δ 9-四氢大麻酚及其三种主要代谢物(单羟基Δ 9-四氢大麻酚、脱羟基Δ 9-四氢大麻酚、羧基Δ 9-四氢大麻酚)和四种合成大麻素的代谢产物(JWH-018-OH、JWH-018-COOH、JWH-073-OH、JWH-122-OH), 含量在ng/L量级。用该方法可以检测污水中极性较低的物质。

Fernando等[66]在2014巴西世界杯期间, 随机检测了运动员住宿区的八份尿样, 结果十六个目标化合物中检测出五种, 其中可卡因的主要代谢物— — 苯甲酰芽子碱浓度为(1.9± 0.3)至(4.2± 0.2)μ g/L, 超过正常值的三百倍。该检测结果已被报告给国际足联等有关组织, 以期利用污水流行病学方法检测运动员在比赛期间服用禁药的违规行为。

3 结论

NMR是应用于定性定量分析的强大工具, 低温探头和仪器联用法等技术发展将核磁共振技术推向了科研的前沿, 因此NMR对于现代科学研究的进步越来越不可或缺。在环境分析中, NMR同样非常重要, 因为它不会对样品造成破坏, 而且数据收集快速。该技术可以分析单一成分或者高度复杂的样品, 并能够识别分子内的一些官能团; 除此之外, 由于NMR技术仅仅需要制备适当的样品, 通过氢谱完成实验就可以对分子进行定量分析。这种快速、非破坏性的方式使得NMR成了重要的定量分析工具。

参考文献
[1] MORERA S, COROMINAS L, RIGOLA M, et al. Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts[J]. Water Research, 2017: 614-623. [本文引用:1]
[2] KIM U J, OH J K, KANNAN K. Occurrence, removal and environmental emission of organophosphate flame retardants/plasticizers in a wastewater treatment plant in New York State, USA[J]. Environmental Science & Technology, 2017, 51(14): 7872-7880. [本文引用:1]
[3] HARDER R, PETERS G M, ASHBOLT N J, et al. Using quantitative microbial risk assessment and life cycle assessment to assess management options in urban water and sanitation infrastructures: Opportunities and unresolved issues[J]. Microbial Risk Analysis, 2017, 5: 71-77. [本文引用:1]
[4] SUN S, SUN G, COHEN E, et al. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data[J]. Hydrology & Earth System Sciences, 2016, 20(12): 935-952. [本文引用:1]
[5] STEPHAN A, STEPHAN L. Life cycle water, energy and cost analysis of multiple water harvesting and management measures for apartment buildings in a Mediterranean climate[J]. Sustainable Cities & Society, 2017, 32: 584-603. [本文引用:1]
[6] BAMAGA O A, ALSHARIF S F, BALKHAIR K S, et al. Improvement of urban water cycle and mitigation of groundwater table rise through advanced membrane desalination of shallow urban brackish groundwater of Jeddah basin[J]. Desalination & Water Treatment, 2016, 57(1): 124-135. [本文引用:1]
[7] VARSHNEY S, JAIN P, ARORA J K, et al. Process development for the removal of toxic metals by functionalized wood pulp: kinetic, thermodynamic, and computational modeling approach[J]. Clean Technologies & Environmental Policy, 2016, 18(8): 2613-2623. [本文引用:1]
[8] ANJUM M, OVES M, KUMAR R, et al. Fabrication of ZnO-ZnS@polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater[J]. International Biodeterioration & Biodegradation, 2017, 119: 66-77. [本文引用:1]
[9] KHAN Z, REHMAN A, HUSSAIN S Z. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater[J]. Chemosphere, 2016, 159: 32-43. [本文引用:1]
[10] WAIMAN C V, DELL’ERBA I E, CHESTA C A. Hybrid films based on a bridged silsesquioxane doped with goethite and montmorillonite nanoparticles as sorbents of wastewater contaminants[J]. Journal of Nanomaterials, 2016(3/4): 40-48. [本文引用:1]
[11] ZHAO D, YU Y, CHEN J P. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects[J]. Chemosphere, 2016, 155: 630-639. [本文引用:1]
[12] BORGES M E, SIERRA M, ESPARZA P. Solar photocatalysis at semi-pilot scale: wastewater decontamination in a packed-bed photocatalytic reactor system with a visible-solar-light-driven photocatalyst[J]. Clean Technologies & Environmental Policy, 2017, 19(4): 1239-1245. [本文引用:1]
[13] CLENDINEN C S, LEEMCMULLEN B, WILLIAMS C M, et al. 13C NMR metabolomics: applications at natural abundance[J]. Analytical Chemistry, 2014, 86(18): 9242-9250. [本文引用:1]
[14] WILLIAMSON R T, BUEVICH A V, MARTIN G E. Using LR-HSQMBC to observe long-range 1H-15N correlations[J]. Tetrahedron Letters, 2014, 55(22): 3365-3366. [本文引用:1]
[15] MARTIN G E, BLINOV K A, WILLIAMSON R T. HMBC-1, n-ADEQUATE spectra calculated from HMBC and 1, n-ADEQUATE spectra[J]. Magnetic Resonance in Chemistry, 2013, 51(5): 299-307. [本文引用:1]
[16] TAMM I, HEINÄMÄKI J, LAIDMÄE I, et al. Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy[J]. Journal of Pharmaceutical Sciences, 2016, 105(3): 1239-1247. [本文引用:1]
[17] KOSTOPOULOU O N, MAGOULAS G E, PAPADOPOULOS G E, et al. Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells[J]. Plos One, 2015, 10(8): e0134526. [本文引用:1]
[18] CHRISTOF ACHTNICH, ERROL FERNANDES, JEANMARC BOLLAG, et al. Covalent binding of reduced metabolites of [15N3] TNT to soil organic matter during a bioremediation process analyzed by 15N NMR spectroscopy[J]. Environmental Science & Technology, 1999, 33(24): B37-B45. [本文引用:1]
[19] SOUZA F P D. Investigation of the interaction between coumarins and its derivatives with human serum albumin: STD-NMR, fluorescence and docking molecular studies[J]. International Journal of Sciences, 2016, 5(2): 1-11. [本文引用:1]
[20] SIMPSON A J, MCNALLY D J, SIMPSON M J. NMR spectroscopy in environmental research: from molecular interactions to global processes[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 58(3-4): 97-175. [本文引用:1]
[21] FENG L, ZHENG H, WANG Y, et al. Ultrasonic-template technology inducing and regulating cationic microblocks in CPAM: characterization, mechanism and sludge flocculation performance[J]. RSC Advances, 2017, 7(38): 23444-23456. [本文引用:1]
[22] ANNAHEIM K E, DOOLETTE A L, SMERNIK R J, et al. Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions[J]. Geoderma, 2015, 257-258: 67-77. [本文引用:1]
[23] NGUYEN H T, KRISTIANSEN R, VESTERGAARD M, et al. Intracellular accumulation of glycine in polyphosphate-accumulating organisms in activated sludge, a novel storage mechanism under dynamic anaerobic-aerobic conditions[J]. Applied & Environmental Microbiology, 2015, 81(14): 4809-4818. [本文引用:1]
[24] ABDULLAH R, CHE F I, WAN R K, et al. Application of raw and composted Recycled Paper Mill Sludge on the growth of Khaya senegalensis and their effects on soil nutrients and heavy metals[J]. International Journal of Agriculture & Biology, 2015, 17(7): 3736-3739. [本文引用:1]
[25] SHADI L, KARIMI M, ENTEZAMI A A, et al. A facile synthesis of polyaniline/polyethylene glycol/polyaniline terpolymers: preparation of electrospun conducting nanofibers by blending of the terpolymers with polycaprolactone[J]. PolymerBulletin, 2013, 70(12): 3529-3545. [本文引用:1]
[26] HABIB H A, HOFFMANN A, HÖPPE H A, et al. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d10 metal-organic frameworks constructed with the 1, 2-Bis(1, 2, 4-triazol-4-yl)ethaneligand [J]. Inorganic Chemistry, 2009, 48(5): 2166-2180. [本文引用:1]
[27] PAULI J, BALDUS M, VAN R B, et al. Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17. 6 Tesla[J]. Chembiochem, 2015, 2(4): 272-281. [本文引用:1]
[28] CHAN E C, KOH P K, MAL M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS)[J]. Journal of Proteome Research, 2009, 8(1): 352-361. [本文引用:1]
[29] KOROLOFF S N, NEVZOROV A A. Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles[J]. Journal of MagneticResonance, 2015, 256: 14-22. [本文引用:1]
[30] NAVALON S, ALVARO M, GARCIA H. Analysis of organic compounds in an urban wastewater treatment plant effluent[J]. Environmental Technology, 2011, 32(3): 295-306. [本文引用:1]
[31] AMIR S, JOURAIPHY A, MEDDICH A, et al. Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR[J]. Journal of Hazardous Materials, 2010, 177(1): 524-529. [本文引用:1]
[32] PITERINA A V, BARLETT J, PEMBROKE J T. C-NMR assessment of the pattern of organic matter transformation during domestic wastewater treatment by autothermal aerobic digestion (ATAD)[J]. International Journal of EnvironmentalResearch & Public Health, 2009, 6(8): 2288-2306. [本文引用:1]
[33] HAJJOUJI H E, MERLINA G, PINELLI E, et al. 13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content[J]. Journal of Hazardous Materials, 2008, 154(1): 927-932. [本文引用:1]
[34] MOSSE K P, PATTI A F, SMERNIK R J, et al. Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils[J]. Journal of Hazardous Materials, 2012, 201(1): 219-228. [本文引用:1]
[35] EL H H, BAILLY J R, WINTERTON P, et al. Chemical and spectroscopic analysis of olive mill waste water during a biological treatment[J]. Bioresour Technol, 2008, 99(11): 4958-4965. [本文引用:1]
[36] ISABEL V, NÚRIA F, FRANCO C, et al. Copper(II) and nickel(II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study[J]. Polyhedron, 2002, 21(14-15): 1363-1367. [本文引用:1]
[37] LEWIS R, LEEUWEN J A V, SMERNIK R J, et al. Changes in the organic character of post-coagulated Pinus radiata, sulfite pulp mill wastewater under aerated stabilization basin treatment-A laboratory scale study[J]. Chemical EngineeringJournal, 2011, 175(22): 160-168. [本文引用:1]
[38] GARCÍA M T, CAMPOS E, RIBOSA I, et al. Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis[J]. Chemosphere, 2005, 60(11): 1636-1643. [本文引用:1]
[39] MARCHE T, SCHNITZER M, DINEL H, et al. Chemical changes during composting of a paper mill sludge-hardwood sawdust mixture[J]. Geoderma, 2003, 116(3): 345-356. [本文引用:1]
[40] SURGET G, LANN K L, DELEBECQ G, et al. Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France)[J]. Journal of Applied Phycology, 2017: 1-16. [本文引用:1]
[41] CHEN H, HUANG W, LIU C, et al. Characteristics and origin of high porosity in nanoporous sand y conglomerates—a case from Shahezi formation of Xujiaweizifault depression[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(10): 6139-6148. [本文引用:1]
[42] SHEEBA M M, PREETHI S, NIJAMUDHEEN A, et al. Half-sand wich Ru(η6-C6H6) complexes with chiral aroylthioureas for enhanced asymmetric transfer hydrogenation of ketones - experimental and theoretical studies[J]. Catalysis Science & Technology, 2015, 5(10): 4790-4799. [本文引用:1]
[43] TRELLU C, PÉCHAUD Y, OTURAN N, et al. Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling[J]. Applied Catalysis BEnvironmental, 2016, 194: 32-41. [本文引用:1]
[44] HUANG S, WANG Y, MA T, et al. Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan Plain[J]. Environmental Science & Pollution Research, 2016, 23(9): 8508-8517. [本文引用:1]
[45] KONGSONG P, SIKONG L, NIYOMWAS S, et al. Enhanced photocatalytic degradation of fulvic acid using N-Doped SnO2/TiO2 thin film coated glass fibers under UV and Solar light irradiation for drinking water purification[J]. Applied Mechanics& Materials, 2016, 835: 359-365. [本文引用:1]
[46] WANG C, JIANG H L, XU H, et al. Variation of physicochemical properties of drinking water treatment residuals and Phoslock® induced by fulvic acid adsorption: Implication for lake restoration. [J]. Environmental Science & PollutionResearch, 2016, 23(1): 351-365. [本文引用:1]
[47] YANAGI Y, SHINDO H. Assessment of long-term compost application on physical, chemical, and biological properties, as well as fertility, of soil in a field subjected to double cropping[J]. Agricultural Sciences, 2016, 7(1): 30-43. [本文引用:1]
[48] JOURAIPHY A, AMIR S, WINTERTON P, et al. Structural study of the fulvic fraction during composting of activated sludge-plant matter: Elemental analysis, FTIR and 13C NMR[J]. Bioresource Technology, 2008, 99(5): 1066-1072. [本文引用:1]
[49] SCHMIDT S, PIECHOTTA C, GODEJOHANN M, et al. Characterisation of commercially available linear alkylbenzenesulfonates by LC-SPE-NMR/MS (liquid chromatography-solid phase extraction-nuclear magnetic resonance spectroscopy-mass spectroscopy)[J]. Talanta, 2010, 82(1): 143-150. [本文引用:1]
[50] BACILIO M, MORENO M, BASHAN Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri, in a salt-tolerant and a salt-susceptible pepper[J]. AppliedSoil Ecology, 2016, 107: 394-404. [本文引用:1]
[51] HUI X, JIAO R, XIAO F, et al. Enhanced removal for humic-acid (HA) and coagulation process using carbon nanotubes (CNTs)/polyalumium chloride (PACl) composites coagulants[J]. Colloids & Surfaces A Physicochemical & EngineeringAspects, 2016, 490(2): 189-199. [本文引用:1]
[52] ALMENDROS G, TINOCO P, ROSA J M D L, et al. Selective effects of forest fires on the structural domains of soil humic acids as shown by dipolar dephasing 13C NMR and graphical-statistical analysis of pyrolysis compounds[J]. Journal ofSoils & Sediments, 2016: 1-11. [本文引用:1]
[53] BARTOSZEK M, POLAK J, SUŁKOWSKI W W. NMR study of the humification process during sewage sludge treatment[J]. Chemosphere, 2008, 73(9): 1465-1470. [本文引用:1]
[54] GODEJOHANN M, BERSET J D, MUFF D. Non-targeted analysis of wastewater treatment plant effluents by high performance liquid chromatography-time slice-solid phase extraction-nuclear magnetic resonance/time-of-flight-massspectrometry[J]. Journal of Chromatography A, 2011, 1218(51): 9202-9209. [本文引用:1]
[55] SCHEURER M, STORCK F R, GRAF C, et al. Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment[J]. Journal of Environmental Monitoring, 2011, 13(4): 966-973. [本文引用:1]
[56] MICHEL A, BRAUCH H J, WORCH E, et al. Development of a liquid chromatography tand em mass spectrometry method for trace analysis of trisiloxane surfactants in the aqueous environment: an alternative strategy for quantification ofethoxylated surfactants[J]. Journal of Chromatography A, 2012, 1245(13): 46-54. [本文引用:1]
[57] SCHEURER M, GODEJOHANN M, WICK A, et al. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame[J]. Environmental Science & Pollution Research, 2012, 19(4): 1107-1118. [本文引用:1]
[58] PREISS A, BERGER-PREISS E, ELEND M, et al. Unusual polar metabolites in the groundwater of a contaminated waste site indicate a new pathway of mononitrotoluene transformation[J]. Chemosphere, 2011, 84(11): 1650-1657. [本文引用:1]
[59] PREISS A, BERGER-PREISS E, ELEND M, et al. A new analytical approach for the comprehensive characterization of polar xenobiotic organic compounds downgradient of old municipal solid waste (MSW) land fills[J]. Analytical & Bioanalytical Chemistry, 2012, 403(9): 2553-2561. [本文引用:1]
[60] DANIELI C, JUSSARA K P, KEITEDA S N, et al. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water[J]. Ecotoxicology and Environmental Safety, 2017, 136: 62-69. [本文引用:1]
[61] LÜBBERT C, BAARS C, DAYAKAR A, et al. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens[J]. Infection, 2017, 45(4): 479-491. [本文引用:1]
[62] SIMONE L, ALEX K, HELGA H, et al. Differential effect of newly isolated phages belonging to PB1-Like, phiKZ-Like and LUZ24-Like viruses against multi-drug resistant pseudomonas aeruginosa under varying growth conditions[J]. Viruses, 2017, 9(11): 315-333. [本文引用:1]
[63] PINTADO-HERRERA M G, WANG C, LU J, et al. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China[J]. Journal of Hazardous Materials, 2016, 323(A): 128-138. [本文引用:1]
[64] GAO T T, DU P, XU Z Q, et al. Optimization and validation of the analytical method to detect common illicit drugs in wastewater[J]. Environmental Science, 2017, 38(1): 201-211. [本文引用:1]
[65] IRIA G M, KEVIN V T, MALCOLM J R. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid-liquid extraction and ultra-high performance supercritical fluid chromatography-tand em massspectrometry[J]. Drug Testing and Analysis, 2017, DOI: 10.1002/dta.2199. [本文引用:1]
[66] FERNANDO F S, GUSTAVO B S, RAFAEL S F, et al. Illicit drugs, metabolites and adulterants in wastewater: monitoring community drug abuse in the brazilian federal district during the 2014 soccer world cup[J]. Journal of the BrazilianChemical Society, 2017, 28(11): 2146-2154. [本文引用:1]