精神活性物质检测技术的研究进展
李彭, 贺剑锋, 刘克林, 张春水, 高利生, 郑珲*
公安部物证鉴定中心 北京市现场物证检验工程技术研究中心,北京100038
郑 珲,女,研究员,硕士,研究方向为毒品检验技术. E-mail: huizheng99999@sina.com

作者简介: 李 彭(1986—),男,山东泰安人,硕士,研究方向为毒品检验技术. E-mail: lipeng77727@163.com

摘要

20世纪80年代以来,精神活性物质在世界范围内日益蔓延,已成为各国公认的世界公害之一.如何精准地检测痕量甚至是超痕量的新型精神活性物质,如何检测存在于复杂基质中的新型精神活性物质,都是极大的挑战.本文对近年来的新型精神活性物质检测的文献进行了综述.首先讨论了气相色谱-质谱联用技术在新型精神活性物质检测中的应用,介绍与这种定性定量技术搭配使用的诸如中空纤维-液相微萃取,电化学增强固相微萃取等方法.液相色谱-质谱联用技术作为一种不可或缺的分析手段,具有高特异性,高速,高选择性等特点,可提供大量待检测精神活性物质的化学信息.此外,本文还综述了三重四级-飞行时间质谱技术,石墨印刷电极技术,酶联免疫法等新技术在精神活性物质检测中的应用进展,以供同行参考.最后提出,在今后一段时期,精神活性物质检测的工作重心应该放在标准物质的制备及检测方法的开发上.

关键词: 毒品分析; 气相色谱-质谱; 液相色谱-质谱; 精神活性物质
中图分类号:DF795.1 文献标志码:中图分类号:DF795.1 文献标识号:A 文章编号:1008-3650(2015)04-0305-07 文章编号:1008-3650(2015)04-0305-07 doi: 10.16467/j.1008-3650.2015.04.013
Psychoactive Substances Analysis: A Literature Review
LI Peng, HE Jianfeng, LIU Kelin, ZHANG Chunshui, GAO Lisheng, ZHENG Hui*
Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
Abstract

In the past decades, an ever-increasing number of new psychoactive substances (NPSs) have appeared in the recreational drug market, and analytical toxicologists have to continuously adapt new screening methods to identify the latest NPSs. The daunting challenges are how to accurately monitor the state of NPSs and how to determine an enormous range of trace and ultra-trace analytes present in sample matrixes with complex or variable compositions. Here we present a critical overview of the analysis of some of the most commonly encountered and most dangerous substances. The rational method development, validation and transfer of robust gas chromatography-mass spectrometry (GC-MS), and important factors impacting the incurred sample analysis are discussed. The mature technologies coupled with GC-MS used in most quantitative bioanalytical laboratories, such as hollow fiber-based liquid phase microextraction (HF-LPME), electrosorption-enhanced solid-phase microextraction (EE-SPME), are also covered. Liquid phase separation techniques coupled with mass spectrometry (LC-MS), is also expounded in this paper. Due to its high specificity, speed and selectivity, LC-MS has long been deployed in NPSs detection to assess not only these continuously changing molecules but also their metabolites, and will probably surpass GC-MS as the leader of the so-called hyphenated techniques in the near future. Further challenges presented are to make sure that new methodologies and equipment comply with the principles of sustainable development, so in the third part, some new techniques, triple quadrupole time-of-flight mass spectrometer (QQQ-TOF-MS), graphite screen-printed electrode (GSPE) and among others, are discussed as well. Finally, one of the key issues, highlighted from future perspective, is to narrow the time gap between the first appearance of an NPS and the availability of reference standards of parent drugs and metabolites. Otherwise, the identification of NPSs and/or their metabolites will remain preliminary.

Keyword: drug analysis; GC-MS; LC-MS; psychoactive substances

精神活性物质是一类化学物质, 依据精神活性物质的药理特性, 分为麻醉性镇痛剂, 兴奋剂, 致幻剂, 中枢神经系统抑制剂等.从2009年开始, 互联网等媒体上出现大量关于新型精神活性物质的信息[1].从国际范围看, 欧洲毒品和毒瘾检测中心的预警系统平均每周都会收到一份关于新型毒品的报告, 美国同样有这种趋势[2].精神活性物质滥用不但对滥用者个体, 他人造成严重伤害, 还导致多种疾病的流行蔓延等社会公共问题[3], 以及因此引发的家庭, 社会治安等严重社会问题.以卡西酮(一种人工合成精神药物的衍生物)为例, 它通过结合去甲肾上腺素, 多巴胺, 血清素等单氨基载体, 表现出精神活性效应, 随着体内卡西酮浓度的增加, 自主神经刺激和精神兴奋愈加强烈[4], 吸食卡西酮引发的“ 啃脸” , “ 杀子” 等恶性犯罪案件数量呈现逐年上升的趋势.精神活性物质种类数量由2009年底的166种增加到2013年底的348种, 增加幅度超过100%, 明显超过了受国际管制的精神活性物质的种类数量(234种)[5].新型精神活性物质的扩散对其检测构成挑战, 因此, 无论在医疗领域还是禁毒领域, 对精神活性物质, 特别是新型精神活性物质的检测都是十分重要的.目前, 精神活性物质的检测主要使用GC-MS, LC-MS和其它仪器联用技术.以下对几种重要的常见联用技术及其相关的样本处理方法进行综述.

1 精神活性物质的GC-MS分析技术

GC-MS具有分离效能好, 灵敏度高, 定性准确和分析速度快等优点, 适合热稳定性好, 容易气化物质的检测, 对于极性强, 挥发性低, 热稳定性差的物质则需要衍生化后再进行分析.衍生化不仅可以改善分析对象的挥发性, 峰形, 分离度, 还同时提高检测的灵敏度.

Eller等[6]采用中空纤维膜液相微萃取(hollow fiber-based liquid phase microextraction, HF-LPME)方法结合GC-MS技术, 研究了尿样中大麻最重要的代谢物△ 9-四氢大麻酸(THC-COOH), 通过优化水解及萃取条件, 使得尿样中THC-COOH的检测限低至1.5 ng/mL, 线性范围2.0~170 ng/mL, r2> 0.99, 该方法快速, 廉价, 仅需要1 mL尿样及少量有机溶剂.Minoli等[7] 采用GC-MS/MS定量检测了头发中的THC-COOH.将头发在温度为90℃ , 浓度为1 mol的NaOH溶液中水解15 min, THC由正己烷:乙酸乙酯混合液(9:1)萃取, 水相加浓乙酸调节pH至4.THC-COOH按照同样的方法萃取.提取物烘干后, 用五氟丙酸酐和六氟异丙醇衍生, 然后用GC-MS分析.THC-COOH的检测线性范围为0.1~5 pg/mg, r2> 0.9993, 检出限(LOD)为0.01 pg/mg, 定量限(LOQ)为0.04 pg/mg.Brabanter等[8]在THC-COOH的样本制备过程中引入了微波辅助反应, GC-MS/MS方法用时4 min, 整个分析过程仅仅用时30 min, 大大提高了分析效率.该方法的线性范围为5~100 ng/mL.

Kuleya等[9] 采用GC-MS技术, 通过简单的溶剂萃取, 分离了哌嗪样本中的19种常见毒品, 并首次实现了1-(2-氟苯基)哌嗪和1-(3-氟苯基)哌嗪和1-(4-氟苯基)哌嗪, 以及1-(2-三氟甲苯基)哌嗪, 1-(3-三氟甲苯基)哌嗪和1-(4-三氟甲苯基)哌嗪的分离.Jennifer等[10]采用间接手性拆分技术, 分离了24种精神活性物质, 使用手性衍生化试剂三氟乙酰丙酰氯将待测物衍生化后, 在30 m的HP5-MS毛细管柱中完成分离, 色谱柱初始温度160℃ , 以2℃ /min速率升至220℃ , 然后以25℃ /min速率升至250℃ , 整个运行时间35.20 min.在上述最优条件下, 其中的13种化合物能够手性拆分, 分离度(Rs)值高达7.0.Tan等[11]采用电增强固相微萃取(electrosorption-enhanced solid-phase microextraction, EE-SPME)方法结合GC-MS技术分析了尿液中的甲基苯丙胺, EE-SPME比传统的固相微萃取更高效, 其富集因子可以达到传统固相微萃取富集因子的159倍, 校准曲线线性范围为0.5~15 ng/mL, r=0.9948.LOD为0.25 ng/mL, RSD为6.12%(n=3).

2 精神活性物质的LC-MS分析技术

与GC-MS相比, LC-MS省去了衍生化步骤, 避免了热不稳定物质受热分解给检测带来的影响.LC与串联质谱(tandem MS)或四级杆串联飞行时间质谱(quadrupole time-of-flight mass spectrometry, QTOF-MS)的联用, 可以给出更多分子碎片的信息.

Patton等[12]首次报道了合成大麻素JWH-018和AM2201的Ω -1单羟基旋光对映体的代谢过程及毒性.利用手性液相色谱串联质谱(chiral LC-MS/MS)定量人体尿样中JWH-018和AM2201的每一种旋光对映体及其它的非手性的代谢物.该方法的准确度(%RE=18.6)和重现性(CV=15.8%)在较低浓度(LLQ=0.99 ng/mL)均令人满意.Scheidweiler等[13]用LC-MS/MS技术同时定量尿样中20种常见大麻素及其21种代谢物, 半定量检测12种烷基羟基代谢物.线性范围的下限为0.1~1.0 μ g/L, 上限为50~100 μ g/L(r2> 0.994).通过使用广谱介质液-液萃取的样本制备技术和预设定多反应监测(multiple reaction monitoring, MRM)方法, 可以免去样本重新制备和仪器参数的重新设定过程, 大大缩短实验时间, 提高实验效率.Sundströ m等[14]采用超高效液相色谱-高分辨飞行时间质谱(ultra high performance liquid chromatography-high resolution-time of flight mass spectrometry, UHPLC-HR-TOFMS)技术, 在单针进样的条件下, 研究了尿液中75种精神活性物质的浓度, 合成大麻素的截止浓度为0.2~60 ng/mL, 卡西酮类的截止浓度为0.7~15 ng/mL.文中的滥用药物的筛查方法是高灵敏度与宽范围的完美结合.Concheiro等[15]用液相色谱-高分辨质谱(LC-high resolution-MS, LC-HRMS)同时定量尿样中24种卡西酮类物质及4种代谢物.将1 mL磷酸盐缓冲溶液(pH=6)和0.25 mL尿样均匀混合后, 注入阳离子交换固相萃取柱, 色谱分离过程在20 min内完成.线性范围为0.5~100 μ g/L, LOD为0.25~1 μ g/L, LOQ为0.5~1 μ g/L, 方法具有良好的选择性和特异性.Poklis等[16]采用HPLC-MS/MS方法, 用2, 5-二甲氧基-N-[(2-甲氧基苯基)甲基]-苯乙胺作内标物, 定量检测了4-溴-2, 5-二甲氧基-N-[(2-甲氧基苯基)甲基]-苯乙胺, 在血清及尿样中的LOD分别为180 pg/mL和1900 pg/mL.此方法检测灵敏度高, 重复性好, 适用于临床毒品中毒的快速鉴定.

Kneisel等[17]采用液相色谱-电喷雾质谱(LC-electrospray ionization-MS, LC/ESI-MS/MS)研究了干净唾液中28种合成大麻素的含量.LOD范围为0.02~0.40 ng/mL, LOQ范围为0.2~4.0 ng/mL.合成大麻素从血液到唾液和从唾液到血液的转移都非常少, 如果在口腔中检测出阳性结果, 一定是在吸烟过程摄入了毒品.由于该类摄入毒品可以残留2天以上, 唾液将会成为检测最近是否使用合成大麻素的有效途径.Kneisel等[18]用Drä ger DCD 5000毒品采样套装, 结合LC/ESI-MS/MS, 检测了唾液中30种合成大麻素, 该方法适用于其中28种成分的定量分析.线性范围为0.015~0.9 ng/mL, LOQ在0.15~3.0 ng/mL之间, 该方法所得结果与采用常规方法检测264例样本所得结论一致.Castro等[19]验证了一种LC-MS/MS方法, 检测唾液中的8种精神活性物质.将样本通过Atlantis® T3 column (100 mm × 2.1 mm, 3 μ m)色谱柱, 使用0.1%的甲酸/乙腈溶液作为流动相, 整个分析过程在10 min内即可完成.LOD低至0.05~0.1 ng/mL, LOQ低至0.2 ng/mL, 线性范围0.2~200 ng/mL.

Gottardo等[20]采用液相色谱-四极杆-飞行时间质谱(LC-QTOF-MS), 分析了435例头发样本中50种常见的精神活性物质, 结果有8例样本给出了1-戊基-3-(1-萘甲酰基)吲哚(JWH-018), 1-丁基-3-(1-萘甲酰基)吲哚(JWH-073), 1-戊基-3-(4-甲氧基萘甲酰基)吲哚(JWH-081), 2-(2-甲氧基苯基)-1-(1-戊基-1H-吲哚-3-基)乙酮(JWH-250), (4-甲基-1-萘基)-(1-戊基-1H-吲哚-3-基)甲酮(JWH-122)的阳性结果, 范围在0.010~1.28 ng/mg.通过检测头发样本, 可以监控在社区内精神活性物质的扩散情况.Cirimele等[21]利用HPLC-MS/MS技术, 分析了头发中18种合成大麻素的含量.该方法线性范围为LOQ-500 pg/mg, 定量范围为0.5~5 pg/mg.Nielsen等[22]用超高压液相色谱-质谱(UHPLC-MS/MS)技术研究了头发中31种常见毒品, 线性范围0.025~25 ng/mg, 同时指出, 在头发样本的研究过程中, 由于头发样本分析中的不确定性, 需要采取措施以防止同一个体及不同个体的头发差异影响结果.

Yamaguchi等[23]创建了一种THC-COOH衍生化的方法, 通过氟甲酸乙酯与2-甲氧基乙胺的作用, 使得酚羟基基团转化为碳酸乙酯基团, 羧基基团转化为甲氧基乙基酰胺基团.通过峰面积可以计算出, 衍生化后THC-COOH的分析灵敏度大约提高100倍.同时, THC的检测灵敏度降低, 这表明, 在电喷射离子化作用下, 胺基基团的出现提高了THC-COOH的检测灵敏度.利用该方法检测人体血液及胆汁内的THC-COOH, 线性范围分别是1~50 ng/mL(血液)和10~400 ng/mL(胆汁).血液中, THC-COOH的LOD为0.25 ng/mL, LOQ为1 ng/mL.Poklis等[24]报道了用HPLC/MS/MS方法, 分析一例19岁男子吸毒致死后的尸检样本2, 5-二甲氧基-4-碘-N-2-甲氧基甲基苯乙胺(25I-NBOMe)的含量.最低检测限为外周血405 pg/mL, 心血410 pg/mL, 尿液2.86 ng/mL, 玻璃体99 pg/mL, 胃容物总量7.1 μ g, 胆汁10.9 ng/g, 脑2.54 ng/g, 肝7.2 ng/g.Li等[25]报道了采用亲水液相色谱-质谱联用技术(ion exchange hydrophilic interaction chromatography-LC-MS, HILIC-LC/MS/MS)在赛马血液中检测11种卡西酮衍生物的含量.实验对比了6个空白血浆和添加0.2 ng/mL分析物的数据, 该方法的线性范围为0.2~50 ng/mL.血浆中不同浓度(0.5, 10, 50 ng/mL)的样本回收率均大于70%.LOD, LOQ和LOC分别为0.02~0.05 ng/mL, 0.2~1.0 ng/mL, 0.2~10 ng/mL.Usui等[26] 采用LC-MS/MS检测方法报道了一例3, 4-二甲基甲卡西酮(3, 4-DMMC)致死案例中的3, 4-DMMC, 该方法在前处理阶段可以快捷, 高效地提取出3, 4-DMMC.3, 4-DMMC在血样和尿样中的线性范围为5~400 ng/mL, 血样和尿样中3, 4-DMMC的回收率分别为85.9%~89.4%和95.8%~101%, LOD分别为1.03 ng/mL和1.37 ng/mL; LOQ分别为5.00 ng/mL和5.38 ng/mL.Anizan等[27] 使用LC-HRMS进行定量, 首次报道了一种检测血浆中亚甲基二氧吡咯戊酮(MDPV)及其主要代谢物的方法, LOD低至0.1 μ g/L, 线性范围0.25~1000 μ g/L, 人-大鼠血浆杂交验证试验表明大鼠的血浆能够精确定量人血的标准曲线.Ambach等[28]采用反相色谱分离-质谱(reversed phase-LC-mass spectrometry, RP-LC-MS/MS)技术, 快速检测干血斑中64种精神活性物质, LOD在1~10 ng/mL范围内.并未观察到来自基质化合物的干扰.平均提取效率为84.6%.该方法制备的干血斑可以稳定保存3天以上.将干血斑中精神活性物质的含量与在全血中的结果进行比较, 结果一致.Teng等[29]介绍了一种固相萃取-液相色谱串联质谱技术(solid phase extraction-LC-time-of-flight mass spectrometry, SPE-LC-TOF-MS), 分析人体全血中151种精神活性物质.分析物通过全自动在线萃取装置中被萃取和分离, LOD为1~100 ng/mL, 回收率为6.3%~163.5%.整个色谱检测过程运行26 min, 包括前处理过程在内, 时间消耗也仅仅为45 min.根据保留时间与分子离子碎片的精确质量, 可以检测大多数常见的精神活性物质, 杀虫剂及除草剂.

Reid等[30]用UHPLC-MS/MS技术, 研究了污水中常见毒品的残留物.安非他明类化合物的LOD为1 ng/L, LOQ为3 ng/L; 合成大麻素类代谢物的LOD为5 ng/L, LOQ为15 ng/L.Nuijs等[31]采用固相萃取及LC-MS/MS技术, 检测废水中亚甲基双氧吡咯戊酮(MDPV), 甲氧麻黄酮(MEPH), 氯胺酮(KET)及其代谢物去甲氯胺酮(NK), 去羟氯胺酮(DHNK), 以及大麻素的主要代谢物THC-COOH.除DHNK外, 其余均用氘代试剂作为内标物.KET, NK, DHNK, MDPV, MEPH的定量下限可以达到 5 ng/L, THC-COOH, KET的定量下限为20 ng/L.其中, MEPH和MDPV的分析是首次报道.该方法通过在大型废水池中采集水样, 检测上述精神活性物质的含量, 可以评估其滥用情况, 防控风险.

Swortwood等[32]采用液相色谱-三重四级杆质谱(LC-triple quadrupole time-of-flight mass spectrometer, LC-QQQ-MS/MS)技术, 研究了苯乙胺, 色胺, 哌嗪等三大类精神活性物质.该方法可以分析32种成分中的27种, LOQ在1~10 ng/mL之间, LOQ低至10 pg/mL.作者用此方法检测了一例疑似吸食毒品死亡案例, 结果表明, 体内七种浓度低至11 ng/mL的化合物可以进行定量检测.Chen等[33]采用液相色谱-电喷雾离子阱质谱(LC-electrospray ionization ion-trap mass spectrometry, LC-ESI-ITMS)方法定量检测了甲卡西酮, 2-甲基氨基- 1-(3, 4-亚甲二氧苯基)-1-丙酮, MDPV以及1-甲基- 4-苯基- 4-哌啶丙酸酯四种物质.结果表明, 在0.010~5.00 ng/mL范围内, 具有良好的线性关系, 系数大于0.9988 .Wohlfarth等[34]使用Applied Biosystems LC-MS/MS API 365电喷雾离子源, 检测出35种精神活性物质, 用1 mmol的甲酸铵和0.1%的甲酸/甲醇溶液分别作为流动相的A相和B相, 用阳离子电喷雾方法表征实验结果的准确性, LOD可以达到1.0~5.0 ng/mL.

3 精神活性物质的新仪器分析技术

随着科技的发展, 运用最新检测原理的检测器不断被开发应用, 检测精度不断提高.下面介绍近期关于精神活性物质检测新技术的报道.

3.1 三重四级-飞行时间质谱技术

Shanks [35], Grabenauer [36], Ibá ñ ez [37]通过研究超过65种化合物, 表明三重四级-飞行时间质谱技术(triple quadrupole time-of-flight mass spectrometer, QQQ-TOF-MS)适用于现代药物化学或者法庭毒物学, 可以在无需提取或者注射的情况下, 对新化合物进行分析.Fornal [38]利用QQQ-TOF-MS技术, 研究了卡西酮类精神活性物质在碰撞诱导时的解离规律, 指出根据化学结构的不饱和度以及氨基基团的特性, 可将常见的卡西酮分为9类, 并且给出了可能的裂解方式, 主要碎片离子和部分高级产物离子.Sekuł a [39]采用该项技术记录MS/MS模式下全扫描精确质谱, 指出这是精神活性物质快速定性的最有价值的工具.

3.2 石墨印刷电极技术

Smith等[40]利用金属修饰的丝网印刷电化学传感器(graphite screen-printed electrode, SPES)研究了精神活性物质, 合成大麻素电化学信号, 首次报道了一种利用石墨印刷电极技术(graphite screen-printed electrode, GSPE)快速准确定量卡西酮衍生物类化合物的方法.利用卡西酮的电化学还原反应进行定量分析, 甲基甲卡西酮(4-MCC)和2-(乙基氨基)-1-(4-甲基苯基)-1-丙酮(4-MEC)的检测下限分别为11.80 μ g/ml和11.60 μ g/ml.GSPE低成本, 单脉冲, 但是有很高的重现性及可靠的信号平台, 今后有希望发展成为便携式的药物分析传感器.Smith等[41]利用GSPE首次发现了甲卡西酮类物质具有电化学活性, 并且研究了(± )-甲卡西酮, 4-MMC, 4-MEC在不同pH条件下的分析响应情况.当pH< 6时, 伏安特性由电化学可逆转变为准可逆, 由此可以进行定量分析.(± )-甲卡西酮在pH=12的条件下, 16~200 μ g/mL浓度范围内电化学信号呈线性关系, LOD为44.5 μ g/mL.4-MMC, 4-MEC在pH=2的条件下, 16~350 μ g/mL浓度范围内电化学信号呈线性关系, LOD为39.8 μ g/mL和84.2 μ g/mL.

3.3 酶联免疫法

Arntson等[42]利用一种酶联免疫吸附测定法(enzyme-linked immunospot assay, ELISA)克服了合成大麻素不与传统大麻抗体交联的缺点, 使用两种ELISA吸收剂, 分别检测114个尿样中的JWH-018和84个尿样中的JWH-250, 结果表明对于JWH-018的5-OH代谢产物和JWH-250的4-OH代谢产物的检测限低至5 ng/mL.Guan等[43]合成了硝西泮的单克隆抗体, 该抗体对硝西泮的半抑制浓度为0.2 ng/mL.抗体与干扰物质的交联度低于0.1%, 而与硝西泮的交联度为23%, 表明酶联反应有很高的特异性.回收率在84%~95%之间, 表明该方法可以应用于尿样中硝西泮的检测.

3.4 胶束动电毛细管色谱串联质谱技术

Š vidrnoch等[44]利用胶束动电毛细管色谱串联质谱技术(micellar electrokinetic chromatography-tandem mass spectrometry, MEKC-MS/MS), 选择性分离, 检测了12种合成大麻素.文章研究了不同浓度的全氟辛酸铵作为背景电解质产生胶束效应, 对于合成卡西酮类物质的选择性的影响.结果表明, 最佳的背景电解质浓度为, 100 mmol全氟辛酸加200 mmol羟胺, 此时, 该方法的线性范围为10~5000 ng/mL, LOD为10~78 ng/mL.Akamatsu等[45]使用MEKC-MS/MS技术同时检测12种合成大麻素.使用挥发性表面活性剂全氟辛酸铵作为胶束准固定相的成分.最佳分离环境为50 mmol全氟辛酸铵的乙腈水溶液(体积分数20%, pH 9.0).回收率为89.5%~101.7%, LOD为6.5~76.5 ng/mL.MEKC-MS/MS方法尚未成为常规的毒品分析方法, 但是其相对较短的分析时间以及可控的选择性等特点将来会凸显出来.

3.5 悬浮固化-分散液液微萃取技术

Ahmadi-Jouibaria等[46]基于悬浮固化-分散液液微萃取技术(dispersive liquid-liquid microextraction based on solidification of floating organic, DLLME-SFO), 结合高效液相色谱-紫外联用技术(high performance liquid chromatography-ultraviolet rays, HPLC-UV), 检测尿样中苯丙胺和甲基苯丙胺.实验的最优化参数为:30.0 μ L正十一醇; 分散剂, 300 μ L乙腈; 缓冲盐, 质量体积分数为2%的K2CO3溶液; 萃取时间, 1 min.此时, 工作曲线在10~3000 μ g/L范围内呈现良好线性关系, LOD在2~8 μ g/L范围内.相比于传统的分散液液微萃取(DLLME)方法, DLLME-SFO方法使用了低毒性的萃取剂, 并且在很短时间内, 给出了高的萃取回收率.

3.6 超声辅助-分散液液微萃取技术

Ferná ndez等[47]采用超声辅助-分散液液微萃取技术(ultrasound-assisted dispersive liquid-liquid microextraction, UA-DLLME), 检测了人体血样中7种苯二氮卓类化合物.在最优化实验条件下, 在反相C18柱与Shield RP18柱中, 线性范围为0.01~5 μ g/mL, 校正系数r> 0.996.C18和Shield RP18柱中的LOQ分别为4.3~13.2 ng/mL和4.0~14.8 ng/mL.所有样本的回收率在71%~102%.

3.7 基质辅助激光解吸电离-四极杆飞行时间质谱技术

Minakata等[48]利用基质辅助激光解吸电离-四极杆飞行时间质谱技术(matrix-assisted laser desorption/ionization-QTOF-MS, MALDI-QTOF-MS), 定量检测了6种吡咯卡西酮的衍生物.实验采用1-苯基- 2-吡咯烷- 1-基-辛酮作为内标物, LOD低至1 ng/mL, 血样中的LOQ为2~100 ng/mL.该方法可以在缺少标准品的情况下检测代谢物, 目标分子与计算出的PV9的三种代谢物的分子量差值仅为0.0007 Da.试验中作者发现, 仅在激光解吸电离技术中才会用到的延时取出电压参数, 却是影响MALDI-MS检测小分子灵敏度的重要因素.Gottardo等[49] 利用MALDI-TOF-MS技术, 检测了31种混合毒品.将0.15 mg样品加2 μ L 3-苯基- 2-丙烯酸/十六烷基三甲基溴化铵(CHCA/CTAB)挥干后, 再加2 μ L CHCA/CTAB, 挥干后即可放入离子源内进行检测.该方法非常适合于在精神药物后的快速定性分析.Ostermann等[50]分析了74份毒品样本, 并将结果与HPLC, 紫外-二极管阵列, Q-MS检测方法所得数据比较, 结论完全一致, 数据相关系数在0.95~0.99之间.

4 讨 论

为了应对精神活性物质持续出现的挑战, 学界研究了多种新的分析技术[51].然而, 标准物质的匮乏常常成为检测的障碍.这些标准物质通常十分昂贵, 也没有相应的氘代标准物质用于构建最佳的定量方法.同时, 毒理分析学家必须要面对不同物质的结构特点, 例如同分异构体等.由于精神活性物质在生物样品中以多种形式存在, 有药物原体(游离型), 有与生物大分子形成的结合态(与蛋白结合型), 有代谢物, 有缀合物(与葡萄糖醛酸, 硫酸形成的甙, 酯等); 生物样品的组分很复杂, 有很多内源性成分(蛋白质, 多肽, 脂肪酸, 色素, 类脂等)和各种潜在的干扰物存在, 还有一些共存药物以及各种外源性物质也会影响测定, 所以样品的前处理是生物体内精神活性物质分析中最为关键和重要的环节, 也是整个分析过程中最为繁琐和困难的一部分.提取, 净化的质量不仅关系到分析检验的速度和检验结果的准确性, 精密度和可靠性, 而且会影响分析仪器的使用寿命.

由于地下实验室对精神活性物质的研发还没有停止的趋势, 精神活性物质的种类在未来肯定还会持续增加.由于LC-MS/MS等技术具备对简单样本快速分析, 高灵敏度及高选择性的特点, 使得其在实验代谢研究及常规尿液检测中已经起到了突出作用.基于高分辨质谱的分析技术, 能够记录低能和高能质谱数据, 在未来5~10年将会凸显出其重要性.最近几年, 越来越多的实验室开始使用商业化的体外检测技术来获得精神活性物质的代谢产物数据.利用计算机模拟结果进行预判, 会被广泛使用到预测新上市毒品的代谢产物.此外, 将来一个重要的任务就是如何在新型毒品出现后, 尽快合成出标准物质.没有这些标准物质, 本文所提到的工作将无从谈起.

The authors have declared that no competing interests exist.

参考文献
[1] DAvila F B, Pereira A G, Salazara F R, et al. Determination of cocaine/crack biomarkers in colostrum by LC-MS following protein precipitation[J]. >J Pharmaceutical and Biomedical Analysis, 2015, 103: 67-72. [本文引用:1]
[2] Maxwell J C. Psychoactive substances-some new, some old: A scan of the situation in the US [J]. Drug and Alcohol Dependence, 2014, 134: 71-77. [本文引用:1]
[3] World Health Organization. Resources for the prevention and treatment of substance use disorders[R]. 2012. [本文引用:1]
[4] Prosser J M, Nelson L S, The toxicology of bath salts: A review of synthetic cathinones [J]. J Med Toxicol, 2012, 8(1): 33-42. [本文引用:1]
[5] United Nations Office on Drugs and Crime. World Drug Report[R]. 2014. [本文引用:1]
[6] de Souza Eller S C W, Flaiban L G, Paranhos B A P B, et al, Analysis of 11-nor-9-carboxy-△9-tetrahydrocannabinol in urine samples by hollow fiber-liquid phase microextraction and gas chromatography-mass spectrometry in consideration of measurementuncertainty[J]. Forensic Toxicol, 2014, 32(2): 282-291. [本文引用:1]
[7] Minoli M, Angeli I, Ravelli A, et al. Detection and quantification of 11-nor-△9-tetrahydrocannabinol-9-carboxylicacid in hair by GC/MS/MS in negative chemical ionization mode (NCI) with a simple and rapid liquid/liquid extraction[J]. Forensic Sci Int2012, 218(1-3): 49-52. [本文引用:1]
[8] Brabanter N De, Gansbeke W V, Hooghe F, et al. Fast quantification of 11-nor-△9-tetrahydrocannabinol-9-carboxylic acid (THCA) using microwave-accelerated derivatisation and gas chromatography-triple quadrupole mass spectrometry[J]. Forensic Sci Int, 2013, 224(1-3): 90-95. [本文引用:1]
[9] Kuleya C, Hall S, Gautam L, et al. An optimised gas chromatographic-mass spectrometric method for the chemical characterisation of benzylpiperazine and 1-arylpiperazine based drugs[J]. Analytical Methods, 2014, 6(1): 156-163. [本文引用:1]
[10] Jennifer A W, Stefan M, Martin G S. Indirect chiral separation of new recreational drugs by gas chromatography-mass spectrometry using trifluoroacetyl-L-prolyl chloride as chiral derivatization reagent[J]. Chirality, 2015, 73(15): 211-215. [本文引用:1]
[11] Tan T Y, Chanbasha B, Melgious J Y A, et al. mElectro-enhanced solid-phase micro-extraction of methamphetamine with commercial fibers[J]. J Chromatography A, 2014, 1297: 12-16. [本文引用:1]
[12] Patton A L, Seely K A, Chimalakonda K C, et al. Targeted metabolomic approach for assessing human synthetic cannabinoid exposure and pharmacology[J]. Analytical Chemistry, 2013, 85(19): 9390-9399. [本文引用:1]
[13] Scheidweiler K B, Huestis M A. Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tand em mass spectrometry[J]. J Chromatography A, 2014, 1327: 105-117. [本文引用:1]
[14] Sundström M, Peland er A, Angerer V, et al. A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method for screening synthetic cannabinoids and other drugs of abuse in urine[J]. Anal Bioanal ChemM2013, 405(26): 8463-8474. [本文引用:1]
[15] Concheiro M, Anizan S, Ellefsen K, et al. Simultaneous quantification of 28 synthetic cathinones and metabolites in urine by liquid chromatography-high resolution mass spectrometry[J]. Anal Bioanal Chem, 2013, 405(29): 9437-9448. [本文引用:1]
[16] Poklis J L, Nanco C R, Troendle M M, et al. Determination of 4-bromo-2, 5-dimethoxy-N-[(2-methoxyphenyl) methyl]-benzeneethanamine (25B-NBOMe) in serum and urine by high performance liquid chromatography with tand em mass spectrometry in a case of severeintoxication[J]. Drug Testing and Analysis, 2013, 6(7-8): 764-769. [本文引用:1]
[17] Kneisel S, Speck M, Moosmann B, et al. LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows[J]. Anal Bioanal Chem, 2013, 405(14): 4691-4706. [本文引用:1]
[18] Kneisel S, Auwärter V, Kempf J. Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography-electrospray ionization tand em mass spectrometry[J]. Drug Testing and Analysis, 2012, 5(8): 657-669. [本文引用:1]
[19] de Castro A, Lendoiro E, Fernández-Vega H, et al. Liquid chromatography tand em mass spectrometry determination of selected synthetic cathinones and two piperazines in oral fluid. Crossreactivity study with an on-site immunoassay device[J]. JChromatography A, 2014, 1374: 93-101. [本文引用:1]
[20] Reid M J, Derry L, Thomas K V. Analysis of new classes of re-creational drugs in sewage: Synthetic cannabinoids and amphe-tamine-like substances[J]. Drug Testing and Analysis, 2013, 6(1-2): 72-79. [本文引用:1]
[21] Cirimele V, Klinger N, Etter M, et al. Testing for 18 synthetic cannabinoids in hair using HPLC-MS/MS: Method development and validation, its application to authentic samples and preliminary results[J]. Toxicologie Analytique & Clinique, 2014, 26(2): S4-S14. [本文引用:1]
[22] Nielsen M K K, Johansen S S, Linnet K. Pre-analytical and analytical variation of drug determination in segmented hair using ultra-performance liquid chromatography-tand em mass spectrometry[J]. Forensic Sci Int, 2014, 234: 16-21. [本文引用:1]
[23] Yamaguchi K, Hayashida M, Ohno Y. [Analysis of 11-nor-9-carbonyl-△9-tetrahydrocannabinol in human blood and bile by liquid chromatography-tand em mass spectrometry after derivatization with ethyl chloroformate and amines[J]. ForensicToxicology, 2013, 32(1): 51-58. [本文引用:1]
[24] Poklis J L, Devers K G, Arbefeville E F, et al. Postmortem detection of 25I-NBOMe [2-(4-iodo-2, 5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluidsand tissues determined by high performance liquid chromatography with tand em massspectrometry from a traumatic death[J]. Forensic Sci Int, 2013, 234: e14-e20. [本文引用:1]
[25] Li X Q, Uboh C E, Soma L R, et al. Sensitive hydrophilic interaction liquid chromatography/tand em mass spectrometry method for rapid detection, quantification and confirmation of cathinone-derived designer drugs for doping control in equine plasma[J]. Rapid Commun Mass Spectrom, 2013, 28(2): 217-229. [本文引用:1]
[26] Usui K, Aramaki T, Hashiyada M, et al. Quantitative analysis of 3, 4-dimethylmethcathinone in blood and urine by liquid chromatography-tand em mass spectrometry in a fatal case[J]. Legal Medicine, 2014, 16(4): 222-226. [本文引用:1]
[27] Anizan S, Ellefsen K, Concheiro M, et al. 3, 4-Methylenedioxypyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2014, 827: 54-63. [本文引用:1]
[28] Ambach L, Redondo A H, König S, et al. Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood spots[J]. Drug Testing and Analysis, 2013, 6(4): 367-375. [本文引用:1]
[29] Teng X M, Liang C, Wang R, et al. Screening of drugs of abuse and toxic compounds in human whole blood using online solid-phase extraction and high-performance liquid chromatography with time-of-flight mass spectrometry[J]. J Separation Science, 2015, 38(1): 50-59. [本文引用:1]
[30] Gottardo R, Sorio D, Musile G, et al. Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population[J]. Medicine, Science and the Law, 2014, 54(1): 22-27. [本文引用:1]
[31] Nuijs A L N, Gheorghe A, Jorens P G, et al. Optimization, validation, the application of liquid chromatography-tand em mass spectrometry for the analysis of new drugs of abuse in waste water [J]. Drug Testing and Analysis, 2013, 6(7-8): 861-867. [本文引用:1]
[32] Swortwood M J, Boland D M, DeCaprio A P. Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis[J]. Analytical and Bioanalytical Chemistry, 2013, 405(4): 1383-1397. [本文引用:1]
[33] Chen X G, Zhang T. Determination and quantitative analysis of designer drugs in human urine by liquid chromatographymass spectrometry[J]. Analytical Methods, 2014, 6(20): 8291-8298. [本文引用:1]
[34] Wohlfarth A, Weinmann W, Dresen S. LC-MS/MS screening method for designer amphetamines, tryptamines, piperazines in serum[J]. Anal Bioanal Chem, 2010, 396(7): 2403-2414. [本文引用:1]
[35] Shanks K G, Dahn T, Behonick G, et al. Analysis of first and second generation legal highs for synthetic cannabinoids and synthetic stimulants by ultra-performance liquid chromatography and time of flight mass spectrometry[J]. J Analytical ToxicologyAdvance Access, 2012, 36(6): 360-371. [本文引用:1]
[36] Grabenauer M, Krol W L, Wiley J L, et al. Analysis of synthetic cannabinoids using high-resolution mass spectrometry and mass defect filtering: Implications for nontargeted screening of designer drugs[J]. Analytical Chemistry, 2012, 84(13): 5574-5581. [本文引用:1]
[37] Ibáñez M, Bijlsma L, Nuijs A L N, et al. Quadrupole-time-of-flight mass spectrometry screening for synthetic cannabinoids in herbal blends[J]. J Mass Spectrom, 2013, 48(6): 685-694. [本文引用:1]
[38] Fornal E. Study of collision-induced dissociation of electrospray-generated protonated cathinones[J]. Drug Testing and Analysis, 2013, 6(7-8): 705-715. [本文引用:1]
[39] Sekuła K, Zuba D, Stanaszek R. Identification of naphthoylindoles acting on cannabinoid receptors based on their fragmentation patterns under ESIQTOFMS [J]. J Mass Spectrometry, 2012, 47(5): 632-643. [本文引用:1]
[40] Smith J P, Metters J P, Khreit O I G, et al. Forensic electrochemistry applied to the sensing of new psychoactive substances: Electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples[J]. Analytical Chemistry, 2014, 86(19): 9985-9992. [本文引用:1]
[41] Smith J P, Metters J P, Irving C, et al. Forensic electrochemistry: The electroanalytical sensing of synthetic cathinone-derivatives and their accompanying adulterants in “legal high” products[J]. Analyst, 2014, 139(2): 389-400. [本文引用:1]
[42] Arntson A, Osfa B, Lancaster D, et al. Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens [J]. J Analytical Toxicology, 2013, 37(5): 284-290. [本文引用:1]
[43] Guan D D, Guo L L, Liu L Q, et al. Development of an ELISA for nitrazepam based on a monoclonal antibody[J]. Food and Agricultural Immunology, 2015, 26(5): 611-621. [本文引用:1]
[44] Švidrnoch M, Lněníčková L, Válka I, et al. Utilization of micellar electrokinetic chromatography-tand em massspectrometry employed volatile micellar phase in the analysis of cathinone designer drugs[J]. J Chromatography A, 2014, 1356: 258-265. [本文引用:1]
[45] Akamatsu S, Mitsuhashi T. MEKC-MS/MS method using a volatile surfactant for the simultaneous determination of 12 synthetic cannabinoids[J]. J Separation Science2014, 37(3): 304-307. [本文引用:1]
[46] Ahmadi-Jouibaria T, Fattahi N, Shamsipur M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquidchromatography[J]. J Pharmaceutical and Biomedical Analysis, 2014, 94: 145-151. [本文引用:1]
[47] Fernández P, González C, Pena M T, et al. A rapid ultrasound-assisted dispersive liquid-liquid microextraction followed by ultra-performance liquid chromatography for the simultaneous determination of seven benzodiazepines in human plasma samples [J]. Analytica Chimica Acta, 2013, 767: 88-96. [本文引用:1]
[48] Minakata K, Yamagishi I, Nozawa H, et al. Determination of new pyrrolidino cathinone derivatives, PVT, F-PVP, MPHP, PV8, PV9 and F-PV9, in human blood by MALDI-Q-TOF mass spectrometry[J]. Forensic Toxicol, 2014, 33(1): 148-154. [本文引用:1]
[49] Gottardo R, Chiarini A, Prà I D, et al. Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS[J]. J Mass Spectrometry, 2011, 47(1): 141-146. [本文引用:1]
[50] Ostermann K M, Luf A, Lutsch N M, et al. MALDI Orbitrap mass spectrometry for fast and simplified analysis of novel street and designer drugs [J]. Clinica Chimica Acta, 2014, 433: 254-258. [本文引用:1]
[51] Favretto D, Pascali J P, Tagliaro F. New challenges and innovation in forensic toxicology. Focus on the “new psychoactive substances”[J]. J Chromatography A, 2013, 1287: 84-95. [本文引用:1]